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Diagnosing Cloudiness from Global 

Numerical Weather Prediction Model Forecasts 

1.     INTRODUCTION 

The U.S. Air Force Air Weather Service (AWS) is responsible for providing 

weather information to Air Force agencies on a global basis. A critical weather 

parameter required by many Air Force groups is the fractional cloud cover over an 

area of interest. This fractional cloud cover (which we will call "cloud amount" in this 

report) may be required over a particular region of interest in which a single value 

of cloud amount is needed for each of many subelements of this region. We refer to 

such an array of areal subelements of a larger area of interest as a grid, and the 

subelements as gridpoints (where each "point" represents the centroid of the spatial 

subelement). 

The Air Force Global Weather Central (AFGWC) is the AWS agency responsible 

for producing and disseminating much of the weather information required in 

worldwide Air Force operations. AFGWC has specified requirements for global cloud 
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analyses (cloud amounts at the present time) and global cloud forecasts (cloud 

amounts at future times) that are necessary to meet existing operational demands1. 

Global cloud analyses are required on an hourly basis on a 24 km resolution (that is, 

spacing between points) grid. Requirements for global cloud forecasts are divided into 

two categories: short-range (1-12 hour) forecasts are required every hour on a 24 km 

grid; long-range (13-120 hour) forecasts are required every 3 hours on a 95 km grid. 

Total cloud amount (that is, the fraction of the subelement covered by any clouds as 

viewed from above) is considered the highest priority, but the fractional coverage by 

each individual cloud layer is also important in the cloud analyses and forecasts. 

The current cloud analysis procedure in use at AFGWC is called the real-time 

nephanalysis model, or RTNEPH. The RTNEPH has been described in detail by 

Kiess and Cox2 and by Hamill et al3. The RTNEPH cloud analyses (which we will 

refer to simply as RTNEPH) are produced every three hours on a global grid that has 

a nominal grid resolution of 46 km. At each gridpoint, the RTNEPH contains 

information pertinent to cloudiness, including total cloud amount, and layer cloud 

amount (with altitudes of bases and tops) for up to four cloudy layers. The cloud 

amount specifications are derived from visible and infrared imagery sensors on polar 

orbiting Department of Defense (DOD) Defense Meteorological Satellite Program 

(DMSP) satellites, as well as conventional surface and upper air observations. Other 

information available at each grid location includes an estimate of the cloud type, 

what type of observation contributed to the cloud amount specification, and the age 

of the specification in hours (that is, the length of time since the last update of the 

amount). 

The current techniques in use at AFGWC for short-range (0-9 hours) and long- 

range (0-48 hours) cloud forecasting are the High Resolution Cloud Prognosis (HRCP) 

model and the 5LAYER model respectively4. Both models use estimates of 

atmospheric moisture derived from RTNEPH cloud analyses as initial conditions. 

Using wind forecasts from the AFGWC Global Spectral Model5, the cloud forecast 

models advect the moisture along a forecast trajectory, then convert the moisture 

forecasts to cloud forecasts. HRCP cloud forecasts are initiated every 3 hours, have 



a time resolution of 3 hours, and a spatial resolution of nominally 46 km. HRCP is 

operated to produce forecasts in a limited area of the globe, usually coinciding with 

a recent swath of DMSP satellite imager data. 5LAYER produces cloud amount 

forecasts at three-hour intervals on a nominal 185 km grid out to 48 hours. In the 

tropics, AFGWC uses a cloud forecast model called TRONEW4 which uses a simple 

diurnal persistence method (that is, cloud cover now will repeat itself in 24 hours). 

It is clear that current capabilities at AFGWC do not meet the previously 

mentioned requirements. To meet these requirements, AFGWC has instituted a 

programmed upgrade to their cloud analysis and forecasting capabilities known as 

the Cloud Depiction and Forecasting System (CDFS) II1. It is expected that the new 

cloud analysis system developed under the Support of Environmental Requirements 

for Cloud Analysis and Archive (SERCAA) project6 will replace RTNEPH and provide 

the required cloud analysis capability. Current CDFS II planning does not include a 

similar specific replacement for HRCP and 5LAYER.1 However, it is expected that an 

improved cloud analysis will benefit forecasts from these two models. In addition, 

CDFS II may be able to take advantage of products of ongoing and future research 

in alternative cloud forecast methods. This research will study the inclusion of cloud 

formation and decay processes in trajectory models, satellite-derived trending 

methods in short-term forecasts, and cloud diagnosis from numerical weather 

prediction (NWP) model forecasts for longer-term cloud amount forecasts. This last 

approach is the topic of the present report. 

Recent DOD decision-making has delegated all global NWP forecast support for 

DOD operations to the Navy's Fleet Numerical Oceanographic Center (FNOC). As 

such, FNOC will routinely provide global NWP forecast data to AFGWC to meet their 

various large-scale, weather-related requirements. Thus, the most straightforward 

way of conducting routine large-scale, long-term cloud forecasting support at AFGWC 

that depends on global NWP inputs is in a stand-alone "post-processor" mode. This 

approach requires no changes to the global data analysis and forecast system at 

FNOC. As is true of all operational centers' global NWP models, cloudiness is not 

carried as an explicitly predicted (prognostic) variable. A cloud diagnostic method, 



rather than a prognostic approach which would require changes to FNOC's NWP 

model, deserves investigation as a first attempt to use global NWP forecasting to 

benefit global cloud forecasting. 

Some prior research has been conducted in the use of NWP model forecasts of 

noncloud meteorological parameters to diagnose cloud amounts at forecast times. 

Geleyn7 developed a quadratic function of forecast relative humidity (RH) in 

association with a tunable parameter known as the critical relative humidity (a 

function of the model's vertical coordinate only) in an attempt to diagnose cloud 

amount from RH at any model time step. The motivation for this, and most other 

attempts at cloud diagnosis in NWP models, was to specify cloudiness for the 

radiative parameterization. Slingo8 made major changes to the Geleyn procedure, 

implemented in the European Centre for Medium Range Forecasting (ECMWF) NWP 

model, introducing a more complex scheme. This scheme combines separate 

algorithms for convective and nonconvective clouds, a constant critical relative 

humidity, and a complex handling of low clouds depending on vertical motion and 

static stability. A number of reports9,10,11 have described adaptations of the Slingo8 

scheme for other NWP models. 

Mitchell and Hahn12 tested several simple empirical cloud-humidity relations 

and encountered large biases that varied both in space and forecast projection, no 

matter which scheme was used. A major problem uncovered was the tendency for the 

humidity distribution to evolve towards a "model-preferred" vertical and latitudinal 

distribution different than the initial or "normal" condition, due to inadequacies in 

the moist physics. To compensate for this problem, the authors devised a procedure 

to produce cloud-humidity relations by matching the cumulative frequency 

distribution for observed cloud cover to the cumulative frequency distribution for 

model gridpoint humidity, with separate relations for different levels and forecast 

times. Independently, Rikus and Hart13 developed a similar procedure. The procedure 

is quite effective at removing the biases and producing stable distributions of cloud 

cover. However, the procedure performed only slightly better than the simple 

diagnostic schemes in root-mean-square (RMS) error (RMSE), and only in some 



circumstances could compete with the 5LAYER model skill. The relatively modest 

skill was blamed on the poor initial humidity analysis used, the error introduced in 

the pre- and post-processing steps, and the geographic dependence of the cloud- 

humidity relationship that they were unable to account for in their study. They found 

that the global spectral model (GSM) cloud forecasts suffered an initial disadvantage 

since they are initialized by a humidity field derived wholly independently of the 

RTNEPH (which is the verification). They recommended that for short-term GSM 

cloud forecasts, the RTNEPH be used solely or in concert with conventional 

observations for humidity initialization. They also recommended the use of the 

trending approach (adding the inferred forecast change of cloud amount to the initial 

RTNEPH amount) when the initial GSM moisture state is based on anything but 

RTNEPH. 

Kvamsto14 used the University of Bergen version of the Norwegian 

Meteorological Institute mesoscale model (50 km, 10-layer, surface to 200 hPa) to 

make forecasts of 21 and 27 hours to compare model humidity fields to cloud fields 

derived from polar-orbiting satellites for a storm case. The diagrams presented show 

an alarming scatter of gridpoint humidity for a given cloud cover. Even though the 

model does include ice physics, the correlation appears better for clouds with tops 

below 3 km. The humidity values for a given cloud cover were noted to be "drier" at 

1500 UTC (mid-afternoon) than 0900 UTC (mid-morning) suggesting a diurnal effect. 

The scatter in the points (± 10 to 20 percent) may have been due to phase error in 

the forecasts of small features or may indicate the atmosphere is capable of producing 

different cloud covers for a given gridpoint humidity. He concludes that the short- 

term humidity forecast is more realistic than the humidity analysis at the 

corresponding time. This implies that humidity analyses cannot be used for 

verification of model simulations of humidity. The humidity field becomes more 

realistic during the integration period as the model gets enough time to structure this 

humidity field. 

Sheu and Curry15 performed a point-by-point verification of three different 

empirical schemes: Slingo8, Mitchell and Hahn12, and Smith16. The authors chose an 



area in the north Atlantic (10-50W, 40-60N) in January 1979 (FGGE Special 

Observing Period) and obtained special ECMWF analysis data for a 1.875-degree grid 

on constant pressure levels. Cloud information was obtained from the AFGWC 

3DNEPH (forerunner of the RTNEPH) data base. The performance of the three-cloud 

specification schemes was rather disappointing. The correlation between observed and 

specified cloud cover was about 0.0 at 1000 hPa, rising to about + 0.4 at 700 and 500 

hPa and dropping to near 0.0 at 200 hPa, with small differences between the 

schemes. One might conclude: (a) the cloud data contain substantial noise; (b) the 

analyzed humidity fields are inaccurate (at least on a point-wise basis); (c) gridpoint 

humidity is insufficient to accurately specify cloud cover. However, the techniques 

were accurate at specifying the monthly mean area-average cloud cover. 

Trapnell17 performed an extensive point verification of experimental cloud 

forecasts using the AFGWC GSM and the Mitchell and Hahn12 scheme (referred to 

here as the "cloud curve algorithm," or "CCA" method) using AFGWC RTNEPH data 

as "truth." Tests were run during several periods of 1991 and 1992, with variations 

in stratification by region and vertical motion, a vertical humidity compaction, a 

diurnal adjustment and other attempts at improving performance. In general, 

forecast scores were better than in the development tests, largely due to the 

improvements in the humidity initialization procedure prior to forecast. However, 6- 

hour forecasts were only slightly better than at 12 or 18 hours, indicating 

performance similar to that found by Shue and Curry15 for specifying cloud from a 

zero-hour forecast. Areal mean cloud amount biases were smaller than those 

produced by the "5LAYER" model. In some cases, skill score statistics were 

competitive with those of 5LAYER, but were never clearly superior. Trapnell17 felt 

that a fairer comparison between CCA in the GSM and 5LAYER would require (1) 

executing the GSM at higher spatial resolution, (2) outputting the GSM RH forecast 

directly on GSM sigma-level surfaces, and (3) utilizing the RTNEPH directly in 

deriving the GSM initial moisture analysis. 

Zivkovic and Louis18 developed an empirical cloud specification technique that 

easily  accommodates multiple variables.  A  "cluster  analysis"  is performed by 



obtaining principal components of variables, such as vertical profiles of temperature, 

humidity, and wind. The components explaining the most variance are retained and 

become the basis for the clusters, which are interpreted as weather "types," each 

associated with a different distribution of cloud cover frequency. A limited test was 

performed using NMC analyzed data (100 km resolution) on four January days, with 

cloud cover derived from surface observations at synoptic times. The resulting 

specifications of cloud cover showed some improvement over a simple quadratic 

formulation using RH and critical RH. 

Bao19 compared forecasts of clouds from the PSU/NCAR mesoscale model at 80 

km resolution 3DNEPH cloud amounts in low, middle, and high altitude category 

designations. Both a diagnostic (cloud fraction is a simple linear function of RH) and 

prognostic (predicted cloud water, then this used in a relationship to deduce 

fractional cloud) were tested. Forecasts were evaluated against 3DNEPH interpolated 

horizontally to the 80 km model grid. Random and maximum overlap specifications 

were used to get low, middle, and high clouds from 15 3DNEPH layers. His major 

findings: (a) too much overcast is predicted by the model with either scheme, (b) 

conventional overlap (maximum and random) assumptions on 3DNEPH layer 

amounts cannot recreate the "total cloud" given in 3DNEPH, so the model clouds 

should not be expected to do so, (c) the model underestimates the area of high 

fractional coverage (this would suggest that the model cloud diagnosis could benefit 

from a scheme that corrects for humidity biases, like the CCA scheme), (d) the 

prognostic method underestimates nonovercast cloud fractions more often than the 

diagnostic scheme does, (e) instantaneous release of latent heat in nonprecipitating 

gridpoints which just become overcast (without neighboring points doing so) can lead 

to small-scale noise in such prognostic models, and (f) though the cloud fraction to 

cloud water relation could be reversed to specify initial cloud water in such a 

prognostic model, grid boxes that are less than saturated will quickly lose their cloud 

water early in the forecast. Bao19 makes several recommendations: (1) there should 

be a consistent definition of cloud amount for both the observations and the NWP 

model predictions, (2) a statistical relationship between cloud amount and model 



variables needs to be carefully established by the perfect-prediction method or by the 

model output statistics method, (3) a treatment of the hydrological processes, which 

gives a consistently good prediction of both precipitation and associated cloud activity, 

is needed in the NWP model, and (4) reliable sources of [cloud] data for initialization 

and forecast verification are necessary. 

Krishnamurti et al.20 compared diagnostic cloud forecasts from three GSMs with 

International Satellite Cloud Climatology Project (ISCCP) cloud amount data sets. 

Each model used its own cloud diagnosis scheme, all of which were fixed temporally 

but included spatial variations (horizontal and vertical). They noticed a spin-up in 

cloud amount from a zero specification to a specification based on the initial humidity 

analysis. The models generated their own humidity fields and the diagnostic schemes 

were tuned to those spun-up humidity states. They attributed the growing difference 

between the model clouds and the ISCCP clouds to: (1) the errors in the forecast of 

the cloud-producing synoptic systems, and (2) the spin-up of the models as the 

forecast period continues. 

Wu21 developed an empirical relationship between model forecast RH and 

diagnosed cloud such that the latter would result in optimal agreement with observed 

outgoing longwave radiation (OLR). To do this, he used a nonlinear programming 

technique known as active set algorithm to minimize a functional proportional to the 

sum of the squares of the vertically-summed difference of the model-produced upward 

radiative flux and the observed top of the atmosphere upward flux (OLR). The model- 

produced flux is dependent on the amount of cloud that has a direct transmittance 

to space (is not overlapped by higher cloud) and its temperature. This cloud amount 

is in turn dependent on the overlap scheme used (here, random) and the diagnostic 

scheme used (here, a hyperbolic tangent function of RH only, with two parameters). 

The method then uses the RH from the model and observed OLR and derives the 

values of the parameters that ensures the best fit of observed and inferred OLR. This 

then sets the cloud diagnosis (RH to cloud) parameters empirically. The parameters 

were derived separately for each of four temperature categories rather than by low, 

middle, and high or model sigma level categories. This empirical relationship is 
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derived over a set of NWP model gridpoints (to which observed OLR has been 

analyzed) which, in this case, was a limited region encompassing just the U.S., 

Mexico, and surrounding waters. The derivation may take place any time there is 

sufficient coverage to be a data assimilation technique. It potentially could improve 

the model's cloud diagnosis at the beginning or at any time during an analysis cycle. 

This would presumably improve the model's ensuing short-term forecast, which 

means a better first-guess for the next analysis, and thus, a better analysis. He saw 

a reduction (over a Smagorinsky diagnosis) of OLR error to background levels in the 

winter, but only a slight reduction in summer. He attributed this to using RH only 

as the predictor, which would not account well for convection dominant in summer. 

Cianciolo22 applied the Model Output Statistics (MOS) approach to a one-year 

sample of AFGWC GSM forecasts and corresponding RTNEPH cloud analyses. The 

goal was to build MOS models (relationships between NWP forecast quantities and 

cloudiness) for limited regions (RTNEPH boxes) to produce 3-, 6-, and 9-hour high 

resolution (46 km) total cloud amount forecasts. Different MOS models were 

developed for different combinations of RTNEPH boxes, seasons, and times of day. 

The study found that the MOS-based forecasts outperformed persistence with respect 

to the overall reduction in mean square error, but did not display the sharpness 

(percent of points which are clear, nearly clear, nearly overcast or overcast) seen in 

the cloud analyses. 

Many of the studies reviewed above used RH as the sole or primary indicator of 

cloud amount. In our study, a major goal was to investigate the utility of using any 

NWP model predicted or diagnosed quantity as a supplement to RH as a cloudiness 

predictor. In practice, we limited our choice of potential predictors from the NWP 

model to those predicted or diagnosed quantities that we felt might in any way be 

linked with cloud amount distribution. Our purpose was to see if a combination of 

predictors may be able to reduce the random error (such as root-mean-square error) 

associated with cloud diagnosis schemes which rely solely or primarily on RH. The 

ultimate motivation of this research was to determine if it is possible to attain 

appreciable cloud forecast skill through a diagnostic method that relies on a subset 



of information available from an NWP model that runs independently of the cloud 

analysis procedure. Accordingly, the independent cloud analyses (here, RTNEPH) 

were used to develop and verify the diagnostic scheme, but were not used in any way 

to influence the NWP forecasts. It may be left for further study to determine if any 

schemes so developed may be further improved by allowing the cloud analysis to 

influence the forecasts (at any time during the forecast procedure) of the noncloud 

predictor variables. 

2.  METHODOLOGY 

As stated in the introduction, the goal of this project was to determine functional 

relationships between cloud amount and NWP model forecast quantities that may be 

used to diagnose clouds from future NWP model forecasts. Because there are no 

known analytical functional relationships, we knew that it would be necessary to 

develop empirical relationships, since we have ruled out numerical prognostic 

methods for reasons stated in the introduction. This puts us into the realm of 

statistical weather forecasting, the other branch of objective weather forecasting. 

Glahn23 has defined statistical weather forecasting as "... forecasting through the use 

of a formal statistical analysis of the data, with the results of that analysis being 

clearly stated." He described the three general methods of applications of statistical 

models as the classical method, the perfect prog method, and the model output 

statistics method. Each method consists of a development phase and an application 

phase. The development phase is the process of collection and analysis of the data 

representing the variable to be predicted (predictand) and the variable(s) used to 

make the prediction (predictor(s)) in order to form an empirical relationship of the 

predictand as a function of one or more predictors. The data set used to develop the 

relationship is called the dependent data set, and should be inclusive enough to 

involve a wide enough range of predictand-predictor value combinations to account 

for future occurrences. The application phase is the forecast process in which the 

relationship is used in conjunction with values of the chosen predictors to forecast 
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values of the predictand at future times. The sample of data over which the statistical 

relationship is applied for forecasting is called the independent data set. In the 

classical method, the dependent data set is made up of predictand values at forecast 

times and predictor values available at observation times. The relationship obtained 

is applied to independent predictor values to obtain corresponding predictand 

forecasts. In the perfect prog method, the dependent data set consists of predictand 

(a variable not available from NWP model forecasts) values at observation times and 

predictor values (variables predicted by an NWP model) available at observation 

times. The relationship obtained is applied to independent predictor values from an 

NWP model at the desired forecast times to obtain corresponding predictand forecasts 

valid at those forecast times. Finally, in the model output statistics (MOS) method, 

the dependent data is composed of predictand values observed at times that 

correspond to the forecast times of the predictor values, which are taken from NWP 

model forecasts valid at those forecast times. The resulting relationship is applied to 

future NWP model forecasts of those predictors to get predictand forecasts. 

2.1   The Dynamic Model Output Statistics Method 

We tried to allow for the planned operating environment at AFGWC under 

CDFS II in selecting a general method of statistical forecasting. Since reputable NWP 

model forecasts would be available, we excluded the classical method, in which the 

method itself is the only predictive mechanism in the process. As the name implies, 

the perfect prog method works best when the NWP model forecast predictor values 

most closely resemble the observed values. Unfortunately, all forecast models create 

both random errors (those varying from point to point and from case to case) and 

systematic errors (those having the same nature over a spatial or temporal domain). 

Using the perfect prog method, these improperly specified values of the predictors at 

forecast times would yield similarly erroneous values of the predictand through the 

relationship derived using observations of both predictor and predictand variables. 

This factor can be overcome to some degree using the MOS method, especially in 
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. dealing with systematic error. If the MOS relationships are derived using the same 

NWP model that will be used to generate future forecasts of the predictor variables, 

then the MOS technique can allow for NWP model biases if the development of the 

relationships is limited to the spatial and temporal domain in which the biases occur. 

The MOS method will relate whatever values of the predictors that the NWP model 

gives it to observed values of the predictand, regardless of the NWP model bias in 

that particular region and season. Ironically, if the NWP model forecast model is 

improved to reduce seasonal or regional biases, the resulting MOS-based predictand 

forecasts would be expected to degrade because of the dependence of the MOS 

relationships on the nature of the NWP model's forecasts. In this case, the MOS 

relationships would have to be rederived for the improved version of the NWP model. 

Typically, the MOS method has been developed for and applied to individual 

locations (such as forecast centers in pre-selected cities), using NWP model forecasts 

over domains that include those locations. This is a way of using the large-scale 

model forecasts, whose resolution cannot fully represent the localized conditions of 

a single point, to predict meteorological conditions for individual localities. In this 

case, it is necessary to collect a dependent data set of predictors and predictands 

separately for each locality for each season. In order to allow for inter-annual 

fluctuations in weather at a certain location, the dependent data set should consist 

of a robust temporal sample over at least several years. 

Other applications of the MOS method have developed predictand-predictor 

relationships over limited regions over which climatic conditions are fairly 

homogeneous, especially where the target area for the forecasting procedure is 

regional (tens to hundreds of kilometers on a side) rather than a locality. In this case, 

a larger sample of gridpoints from within the region, with their varying local 

conditions, will constitute a greater sample of data at any one time and thus may 

decrease the need for a larger temporal sample in the dependent data set. 

We have attempted to account for the likelihood of a changing NWP forecast 

model in our application of the MOS method to cloud forecasting. In our design, our 

MOS relationships are developed from a limited temporal sample of recent NWP 
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model forecasts and concurrent cloud analyses. We chose the 10-day sample of twice- 

daily NWP model forecasts and RTNEPH cloud analyses, immediately prior to the 

date of the initial time of the target forecasts, as the predictand-predictor relationship 

development period. Our spatial domain for this study was the entire Northern 

Hemisphere. We acknowledge that this domain is not climatologically homogeneous, 

and that NWP model variable-cloud amount relationships may be different in the 

different climatic regimes that exist within the hemisphere. However, establishing 

the entire hemisphere as the development domain allows us to baseline the capability 

of the prediction technique for later determination of the benefit of regional 

application of the technique. Furthermore, it ensures that the 10-day sample will 

include all weather types that may be encountered in the forecast period. A recent 

and changing development period makes it likely that the forecasting method will 

encounter the same types of weather-cloud combinations found in the development 

sample, possibly improving its chances for success. Finally, the fact that the 

development period is constantly changing with the target forecast period allows for 

predictand-predictor relationships to account automatically for changes in the NWP 

forecast model. 

2.2   Multiple Linear Regression 

In this project, we chose multiple linear regression (MLR) as the specific method 

in using NWP model forecasts to predict cloud amount. Several factors were 

considered in making this choice. First, the National Weather Service24 (NWS) has 

used MLR quite successfully in developing statistical equations to predict surface 

weather variables (including total cloud cover) based on NWP forecast output. Next, 

this method can be useful when a number of weather factors can affect the predictand 

through physical relationships not well formulated, which appeared likely to be the 

situation in cloud prediction. Lastly, the method is relatively simple and direct, 

systematically reducing the variance, in this case, cloud error-squared, through 

algorithms commercially available in statistical computer software. 
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The typical MLR procedure begins by developing an n x n covariance matrix, 

consisting of n-1 potential predictors and the predictand. The matrix is formed by 

computing all possible cross-products from each data set (in our case, each gridpoint, 

each time), summing over all data sets, dividing by the number of sums, and 

subtracting the cross-product of the averages. The next step is to select a subset of 

potential predictors to specify the predictand and compute the appropriate variables 

for the regression equation. In the IMSL/STAT/LIBRARY software used in this study, 

several selection strategies are available, including simple stepwise (backwards or 

forwards) and a best combination routine. The best combination routine proved to be 

computationally impractical for the 99 predictors used in this study, and following the 

suggestion of Murphy25, a forward stepwise selection was used. In this procedure, the 

predictor with the best correlation to the predictand is found. Then the correlation 

between the "best" predictor and other predictors is removed from the other 

predictors and the next best predictor is sought. This process is continued until a 

desired   number   of predictors   for   the   subset   is   obtained.   In  meteorological 

applications, investigators find very small increase in explained variance (reduction 

error) when the number of predictors in the subset increases beyond about 10 (see 

Figure 1). In this study, we chose 20 as the desired limit, hoping to capture the 

maximum predictive information. 

For analysis purposes, the important results of the MLR process are the 

variance, reduction in variance (correlation coefficient), and the predictors chosen. In 

addition, the MLR routine also provides mean values and the regression slopes for 

chosen predictors. These quantities are used in assembling the linear prediction 

equations to be used in the independent tests. 

2.3   Selection of Predictands 

In our study, the primary predictand was RTNEPH cloud amount. We recognize 

that studies3,26 have shown that the RTNEPH cloud amount representation departs 

from natural cloud distributions in several ways. For example, the RTNEPH tends 
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to underestimate the amount of low clouds in the wintertime high latitudes, because 

of the difficulty in distinguishing cloudiness from the cold, snow or ice-covered 

ground, or ocean surface. Still, the RTNEPH cloud analysis accurately represents the 

important weather-related cloud features, and has a spatial resolution exceeding any 

current global NWP model resolution. This fact allows the RTNEPH to represent 

significant detail in inhomogeneous cloud scenes-for example, distinct frontal bands 

followed by well-defined dry slots and by regions of post-frontal instability marked 

by sectors of convective cloudiness. For large-scale applications, where forecasts for 

cloudiness of subelements of ~ 100 km on a side are desired, the resolution and 

accuracy of the RTNEPH is sufficient for development and verification of forecasting 

methods. 

In addition to RTNEPH cloud amount, we used the difference in cloud amount 

between cloud curve algorithm estimates and RTNEPH as a secondary predictand in 

separately derived predictand-predictor relationships. The basic method for deriving 

cloud curve algorithm (CCA) cloud amounts has been described by Mitchell and 

Hahn12 and Trapnell17. Briefly, the method is as follows. A sample of at least one 

week of global NWP model RH forecasts and RTNEPH cloud analyses corresponding 

to the valid time of the forecasts are used to form the dependent data set. After 

representing both the RH forecast and cloud amount analyses on the same three- 

dimensional grid, the frequency of occurrence of each 1 percent value (between 0 and 

100 percent) is computed over the sample for both RH and cloud amount (usually 

separately for each vertical layer category; Trapnell17 also developed the method 

separately for different geographic regions). The next step is to calculate the 

cumulative frequency of occurrence, which for each 1 percent category is the sum of 

the percent frequencies of occurrence for all 1 percent categories less than or equal 

to that category. Finally, for each 1 percent category, the cumulative frequency of 

occurrence of cloud amount is matched with the equivalent value of cumulative 

percent frequency of occurrence of RH. Thus, each 1 percent cloud amount category 

"finds" a 1 percent RH category that corresponds to it. This is the value of RH that 

is to indicate the corresponding cloud amount in the application. The highest value 
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of RH derived in this way corresponding to zero cloud amount is referred to as the 

critical relative humidity (RHC). In application, any forecast value of RH less than or 

equal to RHC is translated into zero cloud amount. Similarly, the value of RH that 

represents 100 percent cloud amount is called the maximum RH (RHm), and in 

application any RH ;» RHm is translated into 100 percent cloud amount. For all RH 

values in between RHC and RHm, there is a one-to-one correspondence between RH 

and cloud amount. This relationship can be represented in the form of a table, or fit 

with an algebraic function relationship. The cloud amount vs. RH empirical 

relationships (referred to as CCA curves) so derived are applied to the ensuing NWP 

forecast to produce a cloud amount forecast, which we refer to as the CCA cloud 

amount. It is the difference between this and the verifying RTNEPH cloud amount 

that we used as a secondary predictor in separate MLR methodology development and 

application experiments. 

There are several reasons for considering CCA-RTNEPH cloud amount 

differences as a predictand. First, the range of values of the differences are twice that 

of the range of RTNEPH cloud amounts. We felt that the MLR methodology may be 

able to reproduce both positive and negative values better than just being restricted 

to positive values. Secondly, the CCA scheme automatically accounts for NWP model 

drift in humidity at each atmospheric level and each forecast valid time, because 

separate cloud-humidity relationships are derived and applied for each. CCA cloud 

amount forecasts displayed a near-zero bias when the verification was computed over 

the same geographic area for which the relationships were derived and applied17. 

Finally, we felt that perhaps, since the average CCA-RTNEPH difference is about 

zero, no bias (when computed over the entire development domain) would be 

introduced in converting the predicted CCA-RTNEPH values into cloud amount. 

While total area mean cloud amounts showed little bias as a result of using the 

CCA forecast method, the point-by-point accuracy of gridpoint cloud amount was 

disappointing in the earlier studies.15,17 While in some cases, the point-by-point 

accuracy statistics (for example, RMS error) of the CCA forecasts were competitive 

with those of 5LAYER, they could in no cases (different cloud layers, different 
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seasons, different forecast lengths, different geographic areas) be judged clearly and 

consistently better than those of 5LAYER. We believe that this is due to the fact that, 

as the forecast continues, cloud amounts inferred from forecast relative humidity at 

individual points are not well correlated with RTNEPH cloud amounts. It was our 

intention in this project to identify forecast variables (predicted or diagnosed) or 

combinations of such variables that are more closely correlated with RTNEPH cloud 

amounts or CCA-RTNEPH cloud amount differences. 

2.4   Selection of Predictors 

In selecting a priori the predictor variables that we felt would be good indicators 

of cloudiness, we used four somewhat different approaches. The actual choices were 

based in part on the study by Cianciolo22 and in part on experience in NWP and local 

forecasting. The multiple linear regression techniques seek independent specification 

information of predictors as they are added, so there is an advantage to seeking a 

diverse assortment of predictors not related to each other. 

The first approach was to consider the humidity-cloud relation. The earliest 

approach27 simply proposed a linear relation between the grid-volume-average RH 

and the horizontal cloud cover. Physically, there is no argument that shows that such 

a relation should be linear nor is there an obvious reason that RH should be better 

than other humidity parameters. Thus, we included in the predictor list, the volume- 

average RH to the 1st, 2nd and 4th powers as well as condensation-pressure-spread, 

the lifted-condensation-distance, and the precipitable water. A natural assumption 

would be that the cloud cover would correlate best with the humidity of the NWP 

model sigma layer with the highest humidity, so that humidity value was included 

as a predictor. On the other hand, because there may be a significant amount of noise 

or error in the humidities for individual sigma layers at individual gridpoints, the 

deck-average values were included. Relative humidity with respect to ice was also 

included, but since this model has no ice microphysics, it would not likely add useful 

information. Finally, we included the CCA forecast cloud amount diagnosed in the 
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manner discussed in Section 3.6 as a potential humidity-based predictor. 

A major problem developing NWP model moist physics routines is that we do not 

have good measurements of volume-averaged humidity for verification. Typically, the 

moist physics routines are "tuned" to produce reasonable patterns of humidity and 

rainfall, verified against very localized radiosonde and rain gauge measurements. 

Undoubtedly, there are residual humidity errors, and a presumption was made that 

by using basic model dynamic variables known to be related to moisture, some 

compensation could be made for systematic error in the development and decay of 

humidity patterns. Predictors thus chosen included vorticity, divergence, temperature, 

the three components of motion, horizontal vorticity and temperature advection, and 

three-dimensional moisture convergence. From the moist physics routines, 6-hour 

rates of surface evaporation, stratiform precipitation and convecting precipitation 

were included as those parameters that directly impact model humidity. Except for 

those moist physics parameters, the model parameters are instantaneous 

(representative of a model time step, about five minutes). As such, they may be 

temporally unrepresentative. Some reduction of noise can be made by time averaging. 

The easiest way to do so was to include predictor sets at prediction time and 6 hours 

earlier (if the average does reduce variance, the regression will choose both times, 

giving similar coefficients). A more comprehensive approach would require extensive 

modifications to the NWP model data output procedures, counter to our goal of 

developing a procedure easily applied to operational models. 

Simple examination of cloud imagery from satellites reveals great complexity in 

cloud patterns, much of which is at scale sizes too small to be resolved by the global 

NWP model. The small-scale clouds can only result from vertical motion and small- 

scale disturbances, which, for our purposes, we will call "turbulence." If turbulence 

activity is consistent in time and space, or is directly correlated to humidity, the 

effect will be properly included in the regression equations. Experience indicates that 

turbulence is highly variable in time and space and could create situations where 

different cloud cover scenarios could exist for a given layer-average humidity. Models 

are now being implemented that carry turbulent kinetic energy as a variable (e.g., 
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NWS Eta model) but the present version of the GSM does not. As an alternative, 

some predictors were derived from model variables that were believed to be related 

to the amplitude of turbulent motions. Static stability values were computed as deck 

averages and for the a layer having the maximum humidity in the deck. Mountain 

wave turbulence has been found to spill over to adjacent flatter areas, so we also 

included the minimum stability over three decks in a 3X3 gridpoint array centered 

on the predictand point. Wind shear represents a source for turbulent energy and was 

computed for each deck. The deck averaged wind speed was included as well as the 

speed in the lowest model layer. Further, maximum speed in a 3X3X3 gridpoint array 

was computed as well as a 3X3 measure of wind speed in the lowest layer of the 

model. The natural logarithm of the Richardson number for each deck was also 

computed and a 3X3X3 minimum computed. Latent heat release also represents a 

source of turbulent energy and thus moist static stability for each deck was 

computed. Finally, a 3X3 maximum of convective precipitation was used, which might 

indicate turbulent energy propagating out from convective areas. 

In recognition of the fact that NWP model characteristics vary by region and 

time of day, and that RTNEPH cloudiness can be regionally and temporally 

dependent, we included a set of geographic predictors. An advantage of these 

predictors is that they are largely independent of the highly variant dynamic 

predictors and thus may add useful information even though the actual correlation 

maybe small. The geographic predictors included latitude, sine and cosine of latitude, 

and sine and cosine of longitude. The percentage of each equal-area gridpoint that 

exists over water surfaces was included. Solar parameters and terrain variability may 

add information about turbulence conditions. For solar effects, we included solar 

zenith angle, cosine of zenith angle, hours since sunrise and hours since sunset. The 

equal area grid terrain height was added, as it might differ from the smoother model 

terrain, and a terrain variability was included based on standard deviation of 5 km 

average terrain height about the gridpoint mean. A wind-terrain variable was 

computed by multiplying the lowest model layer wind speed times the terrain 

variability. 
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Our list of predictors are shown in Table 1. All combinations of the above, 

including values of multi-layer predictors at the three cloud decks, total 99 predictors 

and one predictand available for ingest into the MLR scheme for each gridpoint in 

each deck. 

2.5   Use of 12-Hour Forecasts to Study Forecast Method Potential 

Two sources of random error are present in cloud amount diagnosis from 

noncloud NWP forecasts. The diagnosis procedure introduces random errors, even if 

the NWP forecasts are error free. This is because similar cloud amount vertical 

profiles can be associated with significantly different vertical profiles of observed 

noncloud meteorological parameters. Then, as the NWP model forecast proceeds 

forward in time, the random errors of the forecasted noncloud variables increase. To 

estimate the best-case capability of the cloud forecasting methods, we sought to 

isolate just the diagnosis procedure error. 

In reality, even zero hour NWP model forecasts depart from observed reality, 

partially because of the difficulty in reconciling the spatial scale differences between 

model grids and observations. In fact, meteorological objective analysis schemes seek 

to arrive at the "optimal blend" between observed values and background field (a 

previous short-term forecast from the NWP model, valid at the time of the 

observations). Because of the local influences of the observations, the meteorological 

analysis has more spatial variance than the background field, and this greater degree 

of variance is unresolvable by the NWP model and is seen as small-scale "noise." 

Initialization procedures are executed on the analyses to remove the noise while 

preserving the information in the analysis in the scales that the model can resolve. 

However, many existing operational initialization schemes do not treat the analyzed 

absolute humidity distribution, so it returns much of the small-scale variance 

introduced in the analysis process. It isn't until the NWP model integration process 

is underway that this unresolved humidity variance is removed (often resulting in 

spurious precipitation in locations that the model sees as being too moist) and the 
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Table 1. List and Description of the "100-Predictors" Used in the 
Selection of Multi-Linear-Regression Cloud Predictors. 

Description 
Vorticity, predictand deck average, forecast t-6 
Divergence, predictand deck average, forecast t-6 
Temperature, predictand deck average, forecast t-6 
Precipitable water, predictand deck average, forecast t-6 
Relative humidity, predictand deck average, forecast t-6 
Vertical velocity, predictand deck average, forecast t-6 
d(theta)/d(z), predictand deck average, forecast t-6 
Wind speed, predictand deck average, forecast t-6 
Wind shear, predictand deck average, forecast t-6 
Vorticity advection, predictand deck average, forecast t-6 
Temperature advection, predictand deck average, forecast t-6 
3-D humidity div., predictand deck average, forecast t-6 
Condens. pres. deficit, predictand deck average, forecast t-6 
d(theta-e)/d(z), predictand deck average, forecast t-6 
West wind component, predictand deck average, forecast t-6 
South wind component, predictand deck average, forecast t-6 
Maximum RH within predictand deck, forecast t-6 
RH at layer above maximum RH (see #17), forecast t-6 
Temperature at maximum RH (see #17), forecast t-6 
d(theta)/d(z) at maximun RH (see#17), forecast t-6 
Surface pressure (not sea-level), forecast t-6 
6-hr stratiform surface precipitation, forecast t-6 
6-hr convective surface precipitation, forecast t-6 
6-hr surface evaporation, forecast t-6 
Surface-layer wind speed, forecast t-6 
Vorticity, high deck average,   forecast t-0 
Vorticity, middle deck average, forecast t-0 
Vorticity, low deck average,    forecast t-0 
Divergence, high deck average,   forecast t-0 
Divergence, middle deck average, forecast t-0 
Divergence, low deck average,    forecast t-0 
Relative humidity (RH), high deck average, forecast t-0 
Relative humidity, middle deck average,    forecast t-0 
Relative humidity, low deck average,      forecast t-0 
Vertical velocity, high deck average,   forecast t-0 
Vertical velocity, middle deck average, forecast t-0 
Vertical velocity, low deck average,    forecast t-0 
d(theta)/d(z), high deck average,   forecast t-0 
d(theta)/d(z), middle deck average, forecast t-0 
d(theta)/d(z), low deck average,    forecast t-0 
Wind speed, high deck average,   forecast t-0 
Wind speed, middle deck average, forecast t-0 
Wind speed, low deck average,    forecast t-0 
Wind shear, high deck average, 12-  forecast t-0 
Wind shear, middle deck average, 12-forecast t-0 
Wind shear, low deck average, 12-  forecast t-0 
Maximum RH within high deck, 12-  forecast t-0 
Maximum RH within middle deck, 12 forecast t-0 
Maximum RH within low deck,    forecast t-0 
Temperature, predictand deck average, forecast t-0 

No. Name 
1 VORD6 
2 DIVD6 
3 TMPD6 
4 PRWD6 
5 RHUD6 
6 OMGD6 
7 STBD6 
8 SPDD6 
9 SHRD6 

10 VADD6 
11 TADD6 
12 QADD6 
13 CPSD6 
14 MSTD6 
15 UCMD6 
16 VCMD6 
17 RHXC6 
18 RHAC6 
19 TMPC 6 
20 STBC6 
21 SFCP6 
22 RFST6 
23 RFCV6 
24 EVAP6 
25 SPDB6 
26 VORH2 
2.7 VORM2 
28 VORL2 
29 DIVH2 
30 DIVM2 
31 DIVL2 
32 RHUH2 
33 RHUM2 
34 RHUL2 
35 OMGH2 
36 OMGM2 
37 OMGL2 
38 STBH2 
39 STBM2 
40 STBL2 
41 SPDH2 
42 SPDM2 
43 SPDL2 
44 SHRH2 
45 SHRM2 
46 SHRL2 
47 RHCH2 
48 RHCM2 
49 RHCL2 
50 TMPD2 
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Table 1. (cont.) List and Description of the "100-Predictors" Used 
in the Selection of Multi-Linear-Regression Cloud Predictors. 

Description 
Precipitable water, predictand deck average, forecast t-0 
Vorticity advection, predictand deck average, forecast t-0 
Temperature advection, predictand deck average, forecast t-0 
3-D humidity div., predictand deck average, forecast t-0 
Condens. pres. deficit, predictand deck average, forecast t-0 
d(theta-e)/d(z), predictand deck average, forecast t-0 
West wind component, predictand deck average, forecast t-0 
South wind component, predictand deck average, forecast t-0 
RH for level above RH-max, predictand deck, forecast t-0 
Temperature at maximum RH (see #17), forecast t-0 
d(theta)/d(z) at maximun RH (see#17), forecast) t-0 
Surface pressure (not sea-level), forecast t-0 
6-hr stratiform surface precipitation, forecast t-0 
6-hr convective surface precipitation, forecast t-0 
6-hr surface evaporation, forecast t-0 
Surface-layer wind speed, forecast t-0 
Maximum-RH-squared within predictand deck, forecast t-0 
Maximum-RH-fourth within predictand deck,  forecast t-0 
CCA cloud forecast, predictand deck, forecast-t-0 
RH wrt ice at RH maximum, predictand deck, forecast t-0 
Lifted-cond.-dist. at RH maximum, pred. deck, forecast t-0 
Ln(Ri.-Number) at RH maximum, predictand deck, forecast t-0 
Latitude (Gaussian grid, GS) 
Sine of Latitude 
Cosine of Latitude 
Sine of Longitude 
Cosine of Longitude 
Solar zenith angle, forecast t-0 
Cosine of solar zenith angle, forecast t-0 
Hours of sunshine before forecast t-0 
Hours of darkness before forecast t-0 
Surface terrain height (9-pt ave., 1/8 mesh data) 
Standard deviation of surface terrain height 
Percent of surface that is water (from 1/64 mesh data) 
Eastward gradient of terrain height 
Northward gradient of terrain height 
3x3x3 (ijk) minimum of Ln(Ri.-Number), forecast t-0 
3x3x3 minimum of d(theta)/d(z), deck average, forecast t-0 
3x3x3 maximum of vertical shear, deck average, forecast t-0 
3x3x3 maximum of wind speed, deck average, forecast t-0 
3x3 maximum of 6-hr convective rainfall, forecast t-0 
3x3 maximum of surface layer wind speed, forecast t-0 
3x3 maximum of surface-speed-times-terrain-var., frcst t-0 
Surface wind times terrain gradient, forecast t-0 
Minimum of terrain ht. or wind/stability height, frcst t-0 
RH-squared, predictand deck average, forecast t-0 
RH-fourth, predictand deck average, forecast t-0 
RH-squared, predictand deck average, forecast t-6 
RH-fourth, predictand deck average, forecast t-6 
Predictand, observed RTNEPH deck cloud cover, forecast t-0 

NO. Name 
51 PRWD2 
52 VADD2 
53 TADD2 
54 QADD2 
55 CPSD2 
56 MSTD2 
57 UCMD2 
58 VCMD2 
59 RHAC2 
60 TMPC2 
61 STBC2 
62 SFCP2 
63 RFST2 
64 RFCV2 
65 EVAP2 
66 SPDB2 
67 RH2C2 
68 RH4C2 
69 CCAC2 
70 RHIC2 
71 LCDC2 
72 LRIC2 
73 GSLAT 
74 SGSLA 
75 CGSLA 
76 SGSLO 
77 CGSLO 
78 ZENA2 
79 CZEN2 
80 HRSS2 
81 HRDK2 
82 SFCHT 
83 SDVHT 
84 PCH20 
85 DZ/DX 
86 DZ/DY 
87 LRN92 
88 STN92 
89 SHX92 
90 SPX92 
91 RCX92 

• 92 SBX92 
93 SVX92 
94 WBLL2 
95 ABTV2 
96 RH2D2 
97 RH4D2 
98 RH2D6 
99 RH4D6 

100 CLDOB 
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spatial humidity scales match those of the mass and motion fields. For this reason, 

Kvamsto14 and others state that using a short-term NWP forecast is a better choice 

for correlation with gridded representations of cloud cover than is the NWP analysis. 

Mitchell and Hahn12 showed that the organization of the large-scale humidity field 

shows a better spatial correspondence with observed cloud patterns in the short-term 

forecast than in the initial analysis. 

We chose a 12-hour forecast to examine the best-case capability of the cloud 

diagnosis method-that is, to best isolate the diagnosis error. We felt that this time 

might represent the best compromise between the model's organization of weather 

systems/patterns and forecast variable accuracy. Using the results from the 12-hour 

forecasts as a baseline, we could then measure the degradation in skill out to 48 

hours of forecast time resulting from growing NWP model forecast error. 

3.     DATA SETS AND EXPERIMENTAL DESIGN 

For this study, we selected the months of January and July 1991, and limited 

the domain of study to the Northern Hemisphere. We expected that this time-space 

domain would provide ample coverage of seasonal extremes (winter and summer) over 

a variety of geographic regimes. Seasonally, we expected that summertime and 

wintertime applications would indicate the range of the forecasting methods' 

capabilities. Geographically, we felt that applying the method over an entire 

hemisphere would be representative of the ultimate global application desired for this 

type of cloud forecasting method. 

3.1   The Transform Grid 

To reconcile the horizontal representation of RTNEPH cloud analyses with the 

NWP model forecasts, we chose the ECMWF equal-area grid28 as the common grid, 

which we refer to as the transform grid. This grid has the same latitude locations as 

the Gaussian grid (the grid on which the spectral NWP model computes its nonlinear 
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terms in grid space), but the number of longitudes at each latitude are chosen so that 

each gridpoint at any latitude represents approximately the same surface area of the 

earth. Figure 2 shows a comparison of the Gaussian grid with the equal-area grid. We 

chose to use the equal-area grid as the transform grid because the NWP model, run 

at a triangular 106 wave (T106) resolution, is more coarsely resolved (each equal-area 

gridpoint is about 125 km on a side) than the RTNEPH analyses (gridpoints about 

46 km on a side). For this reason, the NWP model grid scale is the limiting spatial 

scale. Thus, rather than interpolating NWP model forecasts to the RTNEPH grid 

(where the interpolated fields would not contain the spatial scales associated with the 

more highly resolved observed cloudiness), we averaged the RTNEPH to the 

transform grid. In our case, a 3X3 array of RTNEPH gridpoints extends, on average, 

just 6.5 km beyond the boundaries of a single transform gridpoint. To match each 3X3 

RTNEPH array with the corresponding transform gridpoint, we found the RTNEPH 

gridpoint whose centroid lies closest to the transform gridpoint centroid, then used 

this RTNEPH gridpoint and its contiguous neighbors as the 3X3 array. 

Ideally, it would be desirable to be able to use RTNEPH cloud amounts to specify 

not only the horizontal cloud fraction in each transform grid subelement, but the 

vertical fraction of the subelement occupied by clouds as well. If the base and top 

altitudes of each reported cloud layer at a given RTNEPH gridpoint were known to 

be highly accurate, this would be possible. This is because at each NWP model grid 

location, the NWP model layer interface altitudes are diagnosed from the temperature 

and surface pressure forecasts. Theoretically, one could use this information to 

identify which NWP model layer(s) were occupied by RTNEPH cloud, and the vertical 

fraction to which they are cloud-filled. In practice, however, the degree of accuracy 

to which the RTNEPH cloud base and top altitudes are known3 cannot support the 

identification of even the corresponding NWP model layer. The finest vertical 

discrimination that we felt was justifiable for RTNEPH cloud reports is the 

specification of high, middle, and low cloud decks. Using the NWP model o = p/psfc 

vertical coordinates, we defined the bases of each of the three designated decks as 

a = 0.45 for high, a = 0.80 for middle, and a = 0.99 for low. For both months, we used 
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Figure 2.  Comparison of Gridpoint Distribution Between (a) Full T106 NWP Model Gaussian Grid 
and  (b) Equal-Area Grid 
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the meteorological analyses to determine the monthly mean altitude for each of these 

three a levels at each transform gridpoint. This information was used to place each 

RTNEPH cloud report (with its altitude information) for the corresponding 3X3 array 

into the correct vertical cloud deck(s). In the transformed RTNEPH data sets, we 

cannot state where in the deck the clouds lie or how thick they are--only that they 

fall somewhere within the vertical domain of the deck. Given the variations of NWP 

model variables that can occur within limited extents of the vertical profiles, it is 

unfortunate that we cannot match the cloudiness with the corresponding vertical 

location in the model atmosphere. If the NWP model were very accurate in its vertical 

location of cloud-related weather phenomena, this inability to vertically match the 

observed cloud with the correct model layer would compromise the ability of the cloud 

diagnosis scheme. In practice, however, models exhibit vertical as well as horizontal 

random errors in the placement of weather phenomena. As the accuracy of NWP 

model forecasts and observed cloud depiction improves, we would expect diagnoses 

of cloudiness from NWP model forecasts to improve accordingly. 

3.2  Development of Transform Grid RTNEPH Cloud Amount Data Sets 

We obtained Northern Hemisphere (NH) RTNEPH cloud analysis data sets for 

January, February, July, and August 1991 from the U.S. Air Force Environmental 

Technical Applications Center (USAFETAC) in Asheville, NC on magnetic tapes. The 

data, as received from USAFETAC, were in climatological format, or "box-time" 

format. As shown in Figure 3, there are 60 RTNEPH "boxes" (boxes 1, 8, 57, and 64 

lie completely off the hemisphere and are not included), each of which contains an 

array of 64X64 RTNEPH gridpoints for which a record of data is available. The 

analyses are available at 3-hour intervals. The box-time format means that all 3-hour 

periods in a given month for a given box are arranged on the tape contiguously before 

the data for the next box begins. For this project, we created files of the data in 

synoptic form-all 60 NH boxes in numerical order for the 0000, 0600,1200, and 1800 

UTC time periods of January and July 1991. In creating these files, we took note of 
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Figure 3. Northern Hemisphere RTNEPH Boxes Superimposed on the Polar-Stereographic Projection 
that Defines the RTNEPH One-Eighth Mesh Grid. Each RTNEPH Box is Made up of An 
Array of 64X64 Analysis Points. Data Are Available Only for the On-Hemisphere Analysis 
Points. 
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the indicator at each RTNEPH gridpoint that indicates the "age" of the cloudiness 

data-that is, how many hours ago the reported observation was made. For all 

RTNEPH gridpoints where the data was more than 2 hours old, we set a specially 

inserted flag (as the ninth data word) in the data record to indicate the data was 

untimely. For these points, we wrote only one record that included the original eight 

data words [indicating the box number, year, month, day, hour, "i" value, and "j" 

value (each of which now range 1-64), and a persistence indicator) and the ninth 

word, the timeliness flag. For all RTNEPH gridpoints with timely data (data no more 

than 2 hours old), we wrote this same nine-word record, but with the timeliness flag 

set to a different value when total cloud amount is zero than when it is nonzero. Then 

for timely, nonzero total cloud amount gridpoints only, we wrote a second record 

containing all of the original 28 words of cloud and weather information that was 

present in the RTNEPH data. By writing out the cloud and weather information only 

for timely, cloudy points, we were able to preserve all essential information on the 

RTNEPH cloud distribution while realizing a significant reduction in file storage 

requirements. 

After developing the synoptic form of the RTNEPH data, we transformed each 

of the six-hour time periods for each month onto the transform grid. Horizontally, this 

involved locating the hemispheric RTNEPH grid index (1-512 in both "i" and "j" 

directions) of the RTNEPH gridpoint lying closest to each transform gridpoint. Once 

that RTNEPH point and its contiguous neighbors (a 3X3 array in all) were identified, 

each point was evaluated one at a time for its contribution (if any) to each of the 

three cloud decks of the transform grid (high, middle, low). For each layer (up to four) 

of cloudiness reported at the RTNEPH point, we took note of the base and top 

altitudes, the source flag (indicating what observing system was used at that point 

for that layer), and the cloud type. If a timely RTNEPH point had no contribution to 

a particular cloud deck, a contribution of zero cloud amount was made to an 

accumulating sum for that deck. If the RTNEPH point was untimely, it was 

considered missing and the number of points contributing to the 3X3 average was 

decremented by one. For cloudy, timely points, each cloud layer was considered in 
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turn and put into one of three categories according to the report cloud type: 

cumuloform    (cumulonimbus    and    cumulus),     stratocumulus    (stratus     and 

stratocumulus), and stratoform (all other types). Then the source flag was considered 

for the purpose of determining what information was used to place the cloud amount 

corresponding to that report layer in the appropriate deck. When a surface 

observation was indicated, the base altitude was used; when a satellite observation 

was indicated, the top altitude was used; when a radiosonde observation was 

indicated, both the base and top altitudes were used. If just the base or the top was 

used, the reported cloud amount was added to the accumulating sum in that deck 

into which the reported altitude lies. For cases where both base and top are indicated, 

any decks in which the base and top altitudes lie received that cloud amount as a 

contribution to their accumulating sums. Since it was possible for more than one 

reported cloud layer for a given RTNEPH point to fall within a certain cloud deck, we 

allowed only the layer with the maximum cloud amount to be contributed to that 

deck's accumulating sum. If a reported stratocumulus (by our categorization) layer 

lies in the middle cloud deck, we extended it into the low deck. We extended a 

reported cumuloform (by our categorization) layer to all decks below the deck that it 

fell within based on its altitude assignment. Any reported thin layer that lies in the 

high cloud deck was considered no cloud. After making these contributions to the 

accumulating sums for each of the timely points in the 3X3 array, we computed the 

average cloud amount in each deck by dividing the accumulated sum by the number 

of timely points, then rounding the result to the nearest 5%. We then flagged (for 

later use) all deck average cloud amounts made up mostly of cumuloform cloud 

reports. If the number of timely points was less than five, we set the deck average 

cloud amount to a flag indicating a missing cloud amount. Because timeliness was the 

same for all reported cloud layers at an RTNEPH point, all three decks have the 

same number of timely points. Thus, at any transform gridpoint, valid or missing 

average cloud  amounts exist for all three decks.  This means that over the 

hemisphere, exactly the same number of valid cloud amount transform gridpoints 

exist for all three decks. 

30 



Although the RTNEPH data set includes an estimate of total cloud cover at each 

gridpoint, we used it in this study only to determine if a given gridpoint was cloudy 

or not in forming the synoptic data set. The focus of our study is layered cloud 

amounts, from which we derived an estimate of total cloud amount for illustrative 

reasons only. We used the method of Trapnell17 to estimate total cloud amount from 

any specification of deck cloud amounts that we had. This two-step method uses low 

and middle fractional cloud amount (CA) to arrive at a preliminary value of total 

fractional cloud amount (TC): 

TCprdim = MAX (CAm, CAt) + [1-MAX (CAm> CA,)] • MIN(CAm,CA) • <x       (1) 

which is then used with high cloud amount to arrive at a final value of total cloud 

amount: 

TC = MAX (TCprelim, G4A) + [1-MAX (TCpreJim, CAh)] • MIN(TCpreIim, CAh) • ß  (2) 

where a and ß are parameters that allow the assumed amount of cloud overlap to be 

varied. We followed TrapnelPs tuned overlap assumption and set a = ß = 0.55. Again, 

it should be emphasized that total cloud estimates derived in this manner were 

produced only from deck cloud amount specifications (either transformed RTNEPH 

or diagnosed from forecasts). Cianciolo22 used the reported RTNEPH total cloud 

amounts to develop regression-based predictor-predictand relationships. In this study, 

we chose to develop such relationships separately for each cloud deck, and not for 

total cloud. Total cloud relationships may be derived and applied in future studies. 

3.3  Evaluation of the Transform Grid RTNEPH Cloud Amount Data Sets 

We sought independent cloudiness data samples as a check on the veracity of our 

cloud amount representations on the transform grid. Because of a dearth of 

quantitative independent data, we made only qualitative comparisons of our cloud 

amount distributions with outside data sources. Our first comparisons were with 

Meteosat satellite imagery depicted in the Deutscher Wetterdienst daily weather 
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bulletin. Figure 4 shows the infrared satellite imagery on 0000 UTC 19 January 1991 

for a region of the northeastern Atlantic Ocean and western Europe. Two distinct 

cloud masses are apparent in the imagery. What is not apparent in the photo 

reproduction of the imagery is the region of scattered cloudiness in the northern part 

of the region between the two cloud masses, and the clear area in the region 

immediately west of the more eastward cloud mass, just where it bends westward. 

Also, it is difficult to tell from the reproduction what may constitute high, middle, or 

low clouds. For this reason, it is not possible to rigorously verify the transformed 

RTNEPH cloud amount representations included in the figure. The position of the 

maxima and minima seem consistent with the imagery. The well-defined frontal 

band, apparent especially in the middle deck, is in a position consistent with that 

depicted in the imagery. Also, the minimum (less than 20 percent) region just behind 

the eastward frontal band, just NW of the Iberian peninsula, is correctly positioned. 

Our sense is that perhaps the RTNEPH high cloud amounts may be underestimating 

the actual amounts of high cloud, especially in the central portion of the eastward 

frontal band. However, it is not possible to state this with certainty. 

In Figure 5, we show a summertime comparison with imagery over the same 

region, for the date 0000 UTC 23 July 1991. We felt that brighter amounts of the 

major cloud masses would probably contain more cloudiness than what is depicted 

on the RTNEPH high cloud figure. This apparent underestimate may be due to either 

underestimation of the altitude of cirrus clouds in the RTNEPH data, our selection 

of the NWP model a level defining the high cloud deck base (which is on average 

about 400 m higher in July than in January for the mid-latitudes), our decision to 

ignore thin high clouds, or a combination of the three. This may suggest the use of 

a temperature criterion for setting the high cloud deck base in future work. In any 

case, we feel that the pattern of cloudiness, represented by the middle and low clouds, 

is consistent with the imagery over Europe and the Atlantic. Notice, for example, the 

relatively middle cloud-free region SW of Iceland, but where low clouds exist. This 

coincides with the "darker" (lower) cloud images westward of the frontal cloud mass 

extending southward from Iceland in the imagery. Note that the low and middle deck 
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Figure 4. Cloud Distribution on 0000 UTC 19 Januaiy 1991 as Depicted by (a) Meteosat Satellite 
Imagery and RTNEPH Transform Grid Cloud Amounts (in Percent) in the (b) High, (c) 
Middle, and (d) Low Cloud Decks. 
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Figure 5.  Same as in Figure 4 for 0000 UTC 23 July 1991. 
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RTNEPH includes the isolated convective cloudiness over the Pyrenees Mountains 

and the low cloud west of North Africa. However, it missed the brighter (higher) 

clouds located over North Africa and extending into the Mediterranean Sea. 

In addition to our comparisons with Meteosat imagery, we also computed global 

and zonal average statistics and compared them with previously published statistics 

of 3DNEPH. Table 2 documents the comparison of our 1991 monthly, hemispheric 

averaged transformed RTNEPH cloud amounts with those published by Henderson- 

Sellers29 for 1979 3DNEPH statistics. In the latter study, cloud decks were defined 

as: low cloud--0 to 6500 feet above ground level; middle cloud-6500 to 20,000 feet 

above ground level; high cloud-above 20,000 feet above ground level. Over the ocean 

and non-mountainous land, the base of the middle cloud deck chosen in the 3DNEPH 

study would be 200-300 m lower than in our study, and the base of the high cloud 

deck would be 500-900 m lower than in our study. Thus, we would expect more high 

cloud in the 3DNEPH study; the effect of the middle cloud deck base difference is 

uncertain. Also, recall that only timely data were used in the current study, whereas 

all 3DNEPH data were used in the 1979 study. 

Table 2. NH Monthly Average Cloud Amounts (Percent) 

January July 

3DNEPH 1979 RTNEPH 1991 3DNEPH 1979 RTNEPH 1991 
High 10 5 13 5 
Middl 3            27 37 32 43 
Low 33 38 44 42 

Both studies show an increasing trend in middle and low cloudiness from 

winter to summer. Here again, because of the differences in years of the study and 

study designs, our comparisons can only be qualitative. 

We sought to validate the latitudinal variations of the zonal averages of the 

transformed RTNEPH cloud amounts. Here again, we compared our results with the 

1979 3DNEPH study.29 In Figures 6 and 7, we show the zonal average cloud amounts 
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for the two studies for January and July respectively. The two sets of curves for 

January show the same general trends-a cloud cover minimum at 10-20N, a mid- 

latitude maximum, then in middle and total cloud a relative minimum at 70N and 

an increase poleward, while low and high clouds decrease in amount toward the Pole. 

The crossover point (about 50N) where middle cloud exceeds low cloud agrees also, 

although low-middle cloud differences appear smaller in the 1991 RTNEPH statistics 

equatorward of this point. The apparent underspecification of high cloud in the 1991 

transformed RTNEPH is more striking in the July zonal average cloud amount 

comparison. The two peaks, at ION and 50-60N, are much lower in the 1991 

RTNEPH than in the 1979 3DNEPH. Perhaps as a consequence, the July 1991 

RTNEPH middle cloud amounts exceed their July 1979 3DNEPH counterparts at ION 

by about 30 percent. At 50-60N, low and middle clouds from the two studies are in 

agreement. However, in the two 3DNEPH minima regions~30N and 90N-the middle 

clouds (and the low clouds at 90N) exhibit greater zonal averages. Qualitatively, we 

can say that the two data sets agree in latitudinal trends. Their absolute differences 

cannot be resolved definitively because of the study year and design differences. 

In Table 3, we present transformed 1991 RTNEPH cloud amount statistics for 

January and July. In our computations, we partitioned the hemisphere two ways-30° 

latitude bands, and tropical (0-30N) and extratropical (30-90N) water and land 

regions. For our purposes, transform gridpoints representing areas less than half 

water covered were considered land points. 

We used this partitioning to determine whether or not the statistics for the 

various regions would reveal significant differences that might suggest the benefit of 

regional applications of the forecasting methods. The greatest regional variations of 

the cloud amount average and standard deviation statistics were found in the tropical 

and extratropical land and water stratification. For this reason, we present only the 

statistics for this stratification of regions, plus the hemispheric statistics. 
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Figure 6.       Zonal, Monthly Average Northern Hemisphere Cloud Amounts (Percent) for 1979 
3DNEPH and 1991 RTNEPH for January. 
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Figure 7.   Same as in Figure 6 for July. 
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Table 3. NH Transformed RTNEPH Cloud Amount Statistics 

January 1991 
Average Cloud Amount Percent 

Cloud Deck   0-30N Land   0-30N Water 30-90N Land    30-90N Water    0-90N 

High 2.3 1.9 9.7 6.7 5.4 
Middle 22.0 38.1 27.3 54.7 36.9 
Low 23.0 43.5 27.5 51.0 37.9 
Total 33.1 54.5 44.8 67.4 52.0 

Cloud Amount Standard Deviation Percent 

Cloud Deck   0-30N Land   0-30N Water 30-90N Land    30-90N Water 0-90N 

High                    10.1                 10.4                 20.5                    19.1 16.5 
Middle                32.9                 38.5                 33.8                   37.6 38.1 
Low                     30.4                 35.3                 34.0                   37.1 36.4 
Total                   37.4                 39.0                 37.6                   36.2 39.3 

July 1991 

Average Cloud Amount Percent 

Cloud Deck 0-30N Land    0-30N Water 30-90N Land    30-90N Water 0-90N 

High 4.1 3.6 8.9 2.4 4.8 
Middle 45.8 52.7 31.6 42.1 43.1 
Low 36.8 50.3 37.2 41.0 42.5 
Total 56.2 66.9 49.7 56.6 58.0 

Cloud Amount Standard Deviation Percent 

Cloud Deck 0-30N Land    0-30N Water 30-90N Land 30-90N Water        0-90N 

High 14.0 14.7 18.1 9.6 14.8 
Middle 42.0 40.9 34.8 38.0 39.5 
Low 34.4 35.6 34.3 34.0 35.1 
Total 41.7 37.7 37.2 37.6 38.7 
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Table 4 lists the six-hour time period average number and percentage of equal 

area gridpoint values available in each region for each month. 

Table 4. Number and Percentage of Gridpoint Cloud Amount Values 
Available in Each Region 

Six-Hour Time Average Values 

Region       Total Gridpoints   % of Hemis       Jan % Avail       Jul % Avail 

0-30N Land       2354 14 52 47 
0-30N Water     5899 36 49 50 
30-90N Land     3971 24 65 63 
30-90N Water   4155 25 53 58 
0-90N               16379 100 54 55 

Looking first at the geographic stratification as given in Table 4, we see that 

roughly equal areas of the hemisphere lie poleward and equatorward of 30N as 

expected. The breakdown between land points and water points is about equal 

poleward of 30N, but in the tropics, the surface area of water is slightly more than 

2.5 times that of land. The extratropical regions have a greater number of gridpoints 

with non-missing cloud amounts because of the fact that polar orbiting satellites, 

upon which the RTNEPH primarily depends, give overlapping surveillance in the 

extratropics, while leaving gaps in the coverage in the tropics. The latter fact is one 

of the primary reasons why geostationary imagery will be included in the cloud 

analyses produced in the CDFS-II era. However, even in the tropical land region in 

July, over a 10-day period of twice-daily forecasts, the development sample would 

contain more than 20,000 data values at each forecast time. In our study, time did 

not allow us to develop separate predictive equations for each of these regions. We 

were only able to develop statistical predictor-predictand relationships for the entire 

hemisphere. However, it appears from Table 4 that it would be possible to develop 

stable statistical relationships for each region. 

Table 3 suggests that there may be some benefit from regional statistical 

predictive relationships. Looking at the average cloud amounts, we see a clear 

40 



tendency for greater middle and low cloudiness over water in both tropical and 

extratropical regimes, especially in January. In the high cloud, we see just the 

opposite trend-more cloudiness over land than over water surfaces. Given the 

significantly smaller amounts of high cloud than middle and low cloud, and the fact 

that the high cloud standard deviation is so much larger than the average, the water- 

land differences may be less significant in the high deck. In January, the 

extratropical regions exhibit more cloudiness than their tropical counterparts in all 

three decks. In July, this trend reverses except for high and low cloud averages over 

land. Generally, the larger standard deviations are associated with the larger 

averages, but they are not proportional. For example, in January, the middle and low 

averages over extratropical water are more than 2 times greater than over tropical 

land, but the standard deviations are only about 20 percent greater. Since statistical 

methods tend to forecast better in regions where temporal and spatial variations are 

smaller, we might expect our schemes to perform only modestly better in January 

forecasts over tropical land than over extratropical water surfaces. 

In predicting our ability to forecast cloud amount using statistical methods, it 

is also useful to consider the frequency distribution of the various cloud amount 

categories. As stated previously, we maintained the partitioning of cloud amount into 

5 percent categories in the transformation of the RTNEPH data onto the equal-area 

grid. We therefore can plot histograms of the frequency of occurrence of clouds in 

each of the decks for each region of stratification. We display these plots in Figure 

8 for the entire hemisphere (the major features of the regional plots are similar). The 

most striking feature of these histograms is the large frequency of occurrence of 0 

percent cloud amount (clear). The high cloud deck is clear at 80 percent of the 

gridpoint-times in both months. The entire column is clear over 20 percent of the 

gridpoint-times in January and 15 percent in July. The probability of decks combining 

for 100 percent cloud cover (overcast) is 18 percent for January and 22 percent in 

July. In the three cloud decks, the frequency of occurrence remains very steady 

between 5 percent and 95 percent inclusive. According to Glahn,23 linear schemes 

tend to work best with data when population distribution is normal in both predictor 
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Figure 8.       Frequency of Occurrence (Percentage of All Transform Gridpoints for Four Times Per 
Day Over the Month) of Cloud Amount in the Three Decks and Total Cloud for (a) 
January and (b) July 1991. 
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and predictand. Here, we see an equal spread of the predictand with spikes at either 

end of the spectrum. As we shall see, the multiple linear regression scheme had to 

be modified to account for this bimodal distripution. 

3.4   Development of the NWP Model Forecast Data Sets 

We chose to use the Phillips Laboratory Global Spectral Model (PL GSM) as the 

NWP model responsible for making the weather forecasts from which we would 

develop and apply statistical forecast procedures. The version of the PL GSM used 

in this study was PL-92. This version uses the same numerical approximations and 

physical parameterizations as does the version described by Norquist et al.30, PL-91. 

However, PL-92 includes the generalized truncation formulation of the numerics and 

incorporates the model optimization upgrades described by Nehrkorn et al.31 The 

generalized truncation formulation allows us to run the model in rhomboidal or 

triangular spectral truncation mode. The optimization upgrades allow it to execute 

more efficiently because of code vectorization, and in parallel on several processors 

simultaneously because of multitasking directives included in the code. The PL GSM 

was developed specifically for cloud forecasting research. This study serves as an 

attempt to determine a baseline capability for the NWP model-cloud diagnostic 

approach to cloud forecasting. Any future improvements that we make in the 

forecasting skill of the model can then be evaluated for their impact on the accuracy 

of cloud forecasts produced by diagnosing cloud cover from the model forecasts. 

To initialize the PL GSM forecasts, we acquired global meteorological analysis 

data sets from the European Centre for Medium Range Weather Forecasts (ECMWF). 

We obtained a subset of the ECMWF/TOGA Advanced Operational Analysis Data 

Sets, namely the 0000 and 1200 UTC global analyses for the entire months of 

January, February, July, and August 1991. These analyses were in spherical 

harmonic representation of a triangular spectral truncation of 106 waves (T106). The 

variables included in the analysis set were geopotential (which we converted to 

geopotential height, Z), temperature (T), vertical velocity (which we did not use), 
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zonal wind component (u), meridional wind component (v) and relative humidity 

(RH). These data were available in the analyses on the following pressure surfaces: 

1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and 10 hPa. 

The steps involved in preparing the initial conditions were as follows. First, the 

T106 version of the model surface terrain was constructed. Using a U.S. Navy 10' 

terrain data base, we identified all 10' terrain gridpoints that fell within each gridbox 

of our 320 longitude X 160 Gaussian latitude PL GSM computational grid 

(corresponding to T106). We then averaged the 10' terrain values in each 

computational gridbox to arrive at the mean orography used in our PL GSM 

forecasts. We executed a forward and backward spectral transform on these 320 X 

160 terrain values to effectively truncate the spectral resolution to T106. Next, we 

unpacked the T106 spectral harmonics analysis values of Z, T, u, v, and RH onto the 

320 X 160 computational grid on each of the 14 pressure surfaces. The next step was 

to enter our pre-processor which carried out the following steps: (1) use a hydrostatic 

relationship [geopotential as a quadratic function of the natural logarithm (In) of 

pressure (p)] to deduce a model terrain surface pressure (p.) at each computational 

gridpoint, (2) interpolate T, u, v, and RH linearly in In p from pressure surfaces to 

22 model a layers (approximately the midpoints between the a levels, positioned at 

A a = 0.05 from a = 0 to a = 0.95, then ACT = 0.025, 0.015, 0.010 below a = 0.95) at 

each computational gridpoint, (3) convert RH to specific humidity (q) using the 

method of Derickson and Cotton32 (an efficient algorithmic form of the Murray33 

formulation for the calculation of saturation vapor pressure) at each computational 

gridpoint, and (4) perform a forward spectral transform on u, v (converted to vorticity 

and divergence), T, q, and In p.. This representation of the analysis is referred to as 

T106L22, where L22 signifies the 22 a layers in the vertical structure of the model 

atmosphere. Finally, we applied two iterations of a nonlinear normal mode 

initialization using five vertical modes where, for each iteration, the PL GSM 

provided full model (including diabatic term) tendencies to the initialization 

procedure. These initialized analyses, constructed for 0000 and 1200 UTC analysis 

for the first 24 days of January and July 1991, constituted our initial conditions. 
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Before this study, we had not yet executed the PL GSM at the T106L22 

resolution. Earlier experimentation with the PL-91 version was executed at R30L18 

(R represents rhomboidal truncation). In the process of converting PL-91 to PL-92, 

we ran both versions of the model at R30L18 using identical initial conditions until 

we were satisfied that both versions were yielding essentially the same forecasts. We 

then executed the T106L22 version of PL-92 and compared the resulting forecasts 

with the R30L18 forecasts of PL-92. Figures 9 and 10 show such a comparison for the 

48-hour forecasts of 500 hPa Z and mean sea level pressure (pmsl) initialized at 0000 

UTC 1 January 1991. Also included in the figures are the ECMWF analyses for the 

verification time, 0000 UTC 3 January 1991. Note that the forecast fields position 

the major synoptic feature correctly, but lack the intensity indicated in the analyses. 

The lack of intensity can be attributed at least in part to the initialization process, 

a fact we noticed by comparing maps of ECMWF analysis 500 hPa Z and pmsl with 

the corresponding initialized fields. In fact, we noticed that some synoptic features 

of the 48-hour forecasts were closer in intensity to the verifying analyses than were 

the 0-hour forecasts to their corresponding features. For this reason, we verified 

maps using the uninitialized analyses, but for all other forms of verification, we used 

the initialized analyses to isolate the forecast error. For example, in computing the 

anomaly correlation for the NH north of 20N, we used the initialized analyses as 

verification for both the R30L18 and T106L22 versions of PL-92. The 12-hour 

forecasts initialized 0000 UTC 1 January 1991 had anomaly correlations of 0.987 and 

0.985 respectively, and both versions had 48-hour anomaly correlations of 0.923. In 

this project, we made no attempt to "tune" the model when we ran it at the higher 

resolution. In spite of this, we found that the forecast fields from the two resolutions, 

when evaluated against the initialized analyses, were very similar. We concluded 

from this fact that, for this project, it would not be necessary to tune the T106L22 

version of PL-92 to yield reasonable NWP model forecasts for cloud diagnosis. 

Hereafter in this report, any reference to PL GSM forecasts will refer to the use of 

the PL-92 version unless otherwise specified. 
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We have displayed the zonal cross sections of u, T, and RH RMSE and mean 

error (bias) for the 12-hour and 48-hour T106L22 PL GSM forecasts initialized 0000 

UTC 15 January 1991 and 15 July 1991 in Figures 11-16. These can be compared for 

reference with similar zonal cross sections of PL-91 forecasts shown by Norquist et 

al.30 In the present set of cross sections, we have added the RMSE of RH because of 

our expectation that accuracy of RH forecasts will significantly influence cloud 

distribution diagnosed from the forecasts. In both months, the RH RMSE increases 

between forecast hours 12 and 48, suggesting that the spatial correlation with 

observed cloudiness may be weaker at 48 hours. We expect that this degradation of 

RH forecast accuracy with forecast time may lead to a similar degradation in the 

ability to forecast cloudiness at longer forecast times using a diagnostic method. 

We executed 48-hour T106L22 PL GSM forecasts initialized at 0000 and 1200 

UTC for the periods 1-24 January and 1-24 July 1991. Although we saved the forecast 

fields at 6-hour intervals of forecast time in anticipation of 6-hour diagnoses of cloud 

amount, time allowed us to develop and apply cloud diagnostic procedures only at 

forecast hours 12 and 48. For each 6-hour interval forecast time, we computed the 

transform grid values of deck average RH (RHave), deck maximum RH (RHmax), and 

the multi-layer and surface NWP variables listed in Table 1. Except where otherwise 

specified, the multi-layer NWP values represent the deck average of the quantity. In 

our case, this is the average of five a layers in the low deck (0.80<a<0.99), seven a 

layers in the middle deck (0.45<a<0.80),  and 3-5 a layers in the high deck 

(ölat<a<0.45, where alat = 0.20 for lat = 0-20N, alat = 0.25 for lat = 20-65N, and alat = 

0.30 for lat = 65-90N). The RHave and RHmax values were used in the development of 

the CCA curves over a moving 7-day development period. Data sets of these values 

were constructed from forecasts over the entire 24-day period in each month. The 

multi-layer and surface NWP variable data sets were constructed from forecasts 

initialized from days 8-24 of each month. These were used in a moving 10-day 

development period to derive the statistical predictor-predictand relationships using 

the MLR procedure.  Starting the CCA development 7  days before the MLR 

development ensured that CCA cloud amount forecasts (resulting from applying the 
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CCA curves) would be available in the application of multiple linear regression (MLR) 

on the CCA-RTNEPH cloud amount differences. In addition, CCA cloud amounts 

were used as an additional predictor in the application of MLR cloud amounts. In the 

balance of this report, we shall refer to the application of MLR to the RTNEPH cloud 

amounts as MLR(RTN), and the application of MLR to the CCA-RTNEPH cloud 

amount differences as MLR(CCA-RTN). 

3.5   Preparatory Experimentation 

The CCA method relates frequency of occurrence of RH categories with frequency 

of occurrence of cloud amount to arrive at cloud amount~RH relationships. These 

relationships are often in tabular form, giving a single cloud amount value for each 

of a range RH values, from RHC to RHm. These tabular values are determined 

separately for each cloud deck, and may be plotted as cloud amount as a function of 

RH. The resulting curves are referred to as CCA curves by Trapnell17, and we shall 

use that convention here as well. 

To derive these relationships, we needed to determine which measure of forecast 

RH in a deck consisting of several NWP model a layers might yield the best indicator 

of deck cloudiness. We tested both the RHave and RHmax as candidates for the CCA 

method. We first developed CCA curves based on a moving 7-day sample for 

application to period 8-24 January 1991 using both RHave and RHmax. Figure 17 

compares the two sets of curves developed over the period 11-17 January. Not 

surprisingly, it is clear that for a given RH value, lesser cloud amounts are associated 

with curves based on RHmax than with curves based on RHave. This is because we 

matched the same cloud cover distributions with higher humidities in using RHmax. 

We found that a majority of the gridpoints in the high cloud deck had RHmax = 

100 percent. This is due at least in part to an upper tropospheric moist bias in the 

PL GSM, as documented by Norquist and Chang34. This led to many cases where less 

than 100 percent cloud cover points were associated with 100 percent RHmax, which 

explains the big jump in the high cloud RHmax curve at 100 percent RH.   A similar 
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feature was present in the July high cloud CCA curve using RHmax. The RHave 

distributions revealed many fewer gridpoints where high cloud deck RH =100 

percent, so no such jump in the cloud amounts is evident in the high cloud curve 

associated with RHave. 

To make our final determination on the choice of RH to represent the NWP 

model forecasts in the CCA method, we simply verified a 7-day period of CCA 

forecasts in which both RHave and RHmax were used. The initial times for this set of 

12-hour forecasts were 0000 UTC 18 January-1200 UTC 24 January 1991. We 

obtained larger biases, RMSEs, and mean absolute errors in all three decks using 

RHmax. This was particularly true for the high cloud, where the RMSE using RHmax 

was almost twice the value of RMSE obtained when RHave was used in the CCA 

method. We suspect that the latter result was due to the abundance of RHmax = 100 

percent occurrences, leading to an inability of the scheme to distinguish various cloud 

high deck amounts associated with RHmax =100 percent. We thus chose to practice 

the CCA cloud diagnostic method using cloud deck average RH to represent the NWP 

model forecasts. 

After generating the representation of the predictand (RTNEPH cloud amount 

and CCA-RTNEPH cloud amount differences) and the potential predictors (see Table 

1) on the transform grid, we began the process of developing predictor-predictand 

relationships. We started by applying the MLR procedure separately for each cloud 

deck over the entire hemisphere to the 12-hour PL GSM forecasts initialized twice 

daily on 8-17 January 1991 and RTNEPH cloud amounts (and separately, CCA- 

RTNEPH differences) at the 12-hour verifying times. We began the process using a 

screening regression algorithm that finds the reduction in variance for all 99 

predictors, then starts eliminating predictors that have little or no contribution to the 

linear combination. However, we quickly found that this backward elimination 

procedure, applied for the 8-17 January data sample, swamped the relatively 

powerful mainframe computer we were using. We found that the greatest number of 

predictors that could be handled at one time by the system was about 40. To select 

this set of 40 predictors, we performed a forward selection screening procedure, in 
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which the single predictor (over the set of 99) that reduces the variance of the 

predictand more than any other predictor is identified first. Then, it chooses the 

predictor that, together with the first one selected, reduces the variance more than 

any other combination of two predictors. This process was continued until the top 40 

predictors were identified. For the application of the MLR on the RTNEPH, Table 5 

lists the top five predictors identified for the 8-17 January 12-hour forecasts. In the 

table, the figure 3X3 (3X3X3) represents the two-dimensional (three-dimensional) 

array of equal-area gridpoints centered on the subject gridpoint. Also included is the 

total correlation between the linear combination of the leading 20 predictors and the 

predictand. Note the prominence of RH (and RH2), static stability (d0/oZ), and 

maximum boundary wind speed among the leading predictors. We found that the rate 

of reduction in variance with additional predictors becomes nearly zero after about 

the first 12 predictors. 

Table 5. Five Leading Predictors [MLR(RTN)] in Each Deck 
(Based on 8-17 January 1991 12-Hour Forecasts) 

High Cloud 

(Relative Humidity)2 - High 
Sine of Longitude 
Wind Speed - Low 

Relative Humidity - Middle 
Precipitable Water - High 
Total Cor (20 Pred) = 0.37 

Middle Cloud 

Maximum BL Wind Speed in 3X3 
% Surface Covered by Water 
Minimum Stability in 3X3X3 

Low Cloud 

Relative Humidity - Middle 
Relative Humidity - High 
Total Cor (20 Pred) = 0.58 

Stability (t - 6) - Low 
Minimum Stability in 3X3X3 
Relative Humidity - Middle 

(Relative Humidity)2 - Low 
Maximum BL Wind Speed in 3X3 
Total Cor (20 Pred) = 0.55 

The regression relationships obtained using the leading 20 predictors were 
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applied to the 12-hour PL GSM forecasts initialized at 0000 and 1200 UTC 18 

January 1991. Figure 18 shows a plot of the resulting middle deck cloud amount 

forecasts valid 0000 UTC 19 January 1991 from MLR(RTN) and MLR(CCA-RTN). 

Also plotted for reference are the transformed RTNEPH and the 12-hour CCA 

forecast. Immediately obvious is the sharper cloud amount gradient in the CCA 

forecast, evidenced by well-defined extremes. In contrast, both MLR forecasts resulted 

in cloud distributions that are much flatter and poorly defined than the RTNEPH 

depiction. The MLR procedure minimizes the mean- squared error of estimate, at the 

expense of not preserving the true variance of the predictand's distribution. Thus, the 

greater extremes of cloudiness in the CCA forecast led to greater RMSEs than in the 

MLR forecasts, but produced sharper gradients. 

We next conducted a series of experiments in which we modified the MLR 

process to increase the sharpness (percentage of points that are clear or nearly clear, 

or overcast or nearly overcast) in the MLR forecasts without significantly increasing 

the RMSE. In the case of MLR applied to RTNEPH, we modified the regression slope 

by factors of 2 and 3 in separate applications, to see if more cases of clear and 

overcast may be predicted. In the case of MLR applied to CCA-RTNEPH, we tried 

doubling the regression slope and excluding all humidity predictors in separate 

experiments. The philosophy behind the latter experiment was that, since the CCA 

cloud amount estimate is based totally on humidity, humidity is incorporated in the 

predictand. Thus, humidity would be too highly correlated with the predictand, 

possibly leading to the exclusion of other helpful predictors. 

Table 6 gives the verification statistics for the MLR modification experiments. 

In each case, the predictor-predictand relationships were developed using the PL 

GSM 12-hour forecasts of the predictors initialized twice daily in the ten-day period 

8-17 January, and were applied to the 12-hour PL GSM forecasts initialized 0000 and 

1200 UTC 18 January 1991. In all of our objective verifications, we rounded forecast 

cloud amounts to the nearest 5 percent before verification. The quantity referred to 

as normalized sharpness (NS) in the table is the ratio of the sharpness of the forecast 

field to the sharpness of the observed field. We define sharpness in the same way as 
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Figure 18. Middle Deck Cloud Amounts (%) for 0000 UTC 19 January 1991 from (a) Transformed 
RTNEPH, (b) 12-Hour CCA Forecast, (c) 12-Hour MLR(RTN) Forecast Using Standard 
MLR, (d) 12-Hour MLR(CCA-RTN) Forecast Using Standard MLR. 
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Cianciolo^-the fraction of the gridpoints having either no more than 20 percent or 

no less than 80 percent cloud amount over the verification sample. Ideally, we would 

want our forecasts to preserve the sharpness of the observed cloud fields-thus, a 

value of normalized sharpness closest to unity is most desirable. The other 

verification measure used in Table 6 is mean absolute error (MAE). 

Table 6. NH Verification Statistics for Cloud Amount Forecasts 
12-Hour Forecasts Initialized 0000, 1200 UTC 18 January 1991 

Cloud Deck 

Method                                  Slope Factor      Low Middle              High 
Bias RMSE Bias RMSE Bias RMSE 

MLR(RTN)                                 1.0           0.1    31.0 0.7    31.7 0.2    15.4 
MLR(RTN)                               2.0           1.4   33.6 0.4   34.4 1.9    15.8 
MLR(RTN)                                3.0           2.6   36.4 0.5   37.0 4.3    17.8 
MLR(CCA-RTN)                      1.0          1.1   31.9 2.0   31.8 0.1    15.7 
MLR(CCA-RTN)                      2.0          4.4   39.5 7.6   41.9 2.5   18.2 
MLR (CCA-RTN) w/o Hum.     1.0          2.3   38.6 1.5   36.8 0.7   19.1 

MAE NS MAE NS MAE NS 
MLR(RTN) 1.0 25.8 0.33 26.0 0.41 8.0 1.06 
MLR(RTN) 2.0 25.3 0.75 24.9 0.84 8.6 0.97 
MLR(RTN) 3.0 26.6 0.98 25.6 1.01 9.9 0.90 
MLR (CCA-RTN) 1.0 26.4 0.35 26.2 0.39 8.1 1.06 
MLR (CCA-RTN) 2.0 31.3 0.63 32.8 0.72 10.5 0.97 
MLR (CCA-RTN) w/o Hum. 1.0 29.9 0.77 29.7 0.62 9.0 1.02 

As stated previously, we sought to improve on the basic MLR procedure in such 

a way as to increase sharpness while minimally affecting forecast accuracy. We see 

that for both RTNEPH and CCA-RTNEPH predictands, increasing the regression 

slope increases sharpness and increases bias and RMSE. Interestingly, for MLR(RTN) 

applied to low and middle cloud, doubling the regression slope actually decreases the 

MAE while significantly increasing sharpness. For MLR(CCA-RTN), removing 

humidity variables as predictors increased the MAE less than doubling the regression 

slope, while still increasing the sharpness. 

We feel that MAE may be a better indicator of forecast accuracy than RMSE for 
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this application, because in the latter extraordinary weight is given to larger misses 

(because of the squared factor). In applications where the range of the predictand is 

not limited, RMSE will detect extremely erroneous forecasts readily to indicate a 

significant problem in the forecast procedure or verification data. However, in our 

case, the predictand is rigidly limited to a fairly narrow range, making RMSE not as 

useful in detecting seriously erroneous forecasts. Furthermore, application of these 

forecasts for military decisions is made on a case by case, point by point basis. It is, 

therefore, important to minimize the typical, or average error rather than the root- 

mean-square error (which is better to minimize if forecast skill over ensembles of 

forecasts at many locations simultaneously must be optimized). For this reason, we 

chose the best balance between MAE and sharpness as our criterion for selecting the 

version of the MLR procedure to use in our experiments. On this basis, MLR(RTN) 

with a slope factor of 2, and MLR(CCA-RTN) without humidity predictors were 

chosen as the experimental MLR techniques for the predictands RTNEPH and CCA- 

RTNEPH respectively. 

In addition to assessing the impacts of the modifications to the MLR procedure 

using verification statistics, it is instructive to examine the effects on the cloud 

amount categorical distribution. This can be done with a contingency table, which 

lists the percent frequency of occurrence of 5 percent category cloud amounts in the 

forecast fields vs. the observed fields. Figure 19 shows the contingency tables for the 

single-day verification period assessed above, for both the original and doubled 

regression slope application of MLR(RTN) for the middle cloud deck. The sum of the 

forecast percentages within 20 percent of the diagonal (the diagonal indicates cases 

of correct forecasts) are larger for the original slope table than for the doubled slope 

table in the 20-75 percent range of observed cloud amounts. In the extremes of the 

range of observed cloud, the double regression slope table indicates many more 

occurrences of cloud amount forecasts within 20 percent than did the original slope 

method. These results suggest that the doubled slope method achieves better 

sharpness than the original by better replicating the bimodality of the observed cloud 

cover distribution. This improvement comes at the expense of a slightly poorer skill 
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Fest % a 
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 3 
95 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 1 4 
90 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 1 5 
85 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 2 2 5 
80 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 2 3 2 6 
75 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 3 3 2 8 
70 1 1 1 0 0 1 1 1 1 1 1 1 1 2 1 2 2 3 3 3 8 
65 3 1 1 1 ■1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 9 
60 5 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 3 3 2 7 
55 8 1 2 1 1 1 1 1 2 1 1 2 2 2 2 3 2 3 5 4 7 
50 11 2 2 2 3 2 2 2 2 2 3 2 2 2 2 •3 2 3 4 3 7 
45 16 3 3 2 3 2 2 3 2 2 2 2 2 3 2 2 3 3 3 2 7 
40 23 4 5 3 4 2 3 3 3 2 3 2 2 3 2 3 3 3 3 2 6 
35 33 6 5 4 4 3 3 3 2 3 2 3 2 2 2 3 3 3 3 2 7 
30 41 8 6 4 4 3 3 4 3 3 2 2 2 2 2 2 2 2 2 2 4 
25 41 8 5 4 4 3 3 3 2 2 2 2 1 2 1 2 1 1 1 1 4 
20 38 6 4 3 3 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 3 
15 28 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 2 
10 22 3 3 2 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 
5 18 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 27 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 
Fest % h 
100 2 1 1 1 1 1 1 2 1 3 2 5 3 5 4 7 7 9 15 9 36 
95 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 4 
90 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 2 1 5 
85 2 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 2 1 5 
80 2 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 2 1 4 
75 3 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 1 2 
70 4 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 2 3 2 4 
65 5 1 1 0 1 1 1 1 1 1 1 1 1 1=' 1 1 1 1 2 2 3 
60 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 4 
55 6 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 3 
50 7 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 
45 10 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 3 
40 11 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 3 
35 13 2 3 1 2 2 1 2 1 1 1 1 1 2 1 2 2 1 2 1 3 
30 . 16 3 3 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 2 1 4 
25 18 4 3 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 3 
20 21 4 3 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 0 2 
15 21 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1 0 1 1 1 2 
10 21 4 3 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 
5 18 3 2 2 2 1 1 2 1 1 1 1 1 1 1 1 0 1 1 1 1 
0 127 14 12 7 6 4 3 4 3 4 3 4 3 2 2 2 2 2 2 1 6 

0  5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 
Obs  % 

Figure 19.     Middle Cloud Deck Contingency Table (Percent X 10 Frequency of Occurrence of Cloud 
Amount Diagnoses at Gridpoints Falling with Simultaneous Forecast and Observed 5% 
Categories) for 12-Hour Forecasts Initialized 0000, 1200 UTC 18 January 1991 Using 
(a) MLR(RTN) with Standard (1.0) Regression Slope, (b) MLR(RTN) with Doubled (2.0) 
Regression Slope. 
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of the doubled slope method in intermediate cloud amount categories. However, as 

seen in Figure 8, these intermediate categories (20-75 percent) represent a minority 

(about 30 percent for January RTNEPH) of the observed cloud amount cases. Thus, 

it seems wise to select the method that gives better forecasts in cloud amount cover 

categories occurring more of the time (70 percent) to increase our probability for 

success. For this reason, we chose the doubled slope method over the unmodified 

slope method for MLR(RTN). For MLR(CCA-RTN), similar observations were made 

when comparing contingency tables (not shown) for the original method and the 

method in which humidity predictors were withheld. For this reason, the latter 

method was chosen for the CCA-RTNEPH predictand. From this point forward in the 

report, references to MLR(RTN) and MLR(CCA-RTN) will imply the use of these 

chosen modifications to the original procedure. 

3.6   Experimental Design 

The CCA cloud-forecast RH relationships were developed over moving 7-day 

periods in January and July 1991. The first development period in each month 

spanned the period 0000 UTC of day 1 to 1200 UTC of day 7. Deck average PL GSM 

RH forecasts initialized at each of these times were used with transform grid 

RTNEPH cloud amounts at the forecast verification times. Resulting cloud amount- 

RH relationships (the CCA curves) were applied to the PL GSM RH forecast 

initialized at 0000 UTC on day 8. That is, we applied each developed set of CCA 

curves to a single initial forecast time. Thus, the development period moved forward 

a half-day at a time, as does the application date and time. The last development 

period in each month spanned the period 1200 UTC day 17 to 0000 UTC day 24, and 

consequent relationships were applied to the 1200 UTC day 24 forecast. We felt that 

we could avoid a two-week development period, like that used by Trapnell17, because 

the entire hemisphere is used (unlike TrapnelPs regional CCA curves). 

We developed the NH predictor-predictand relationships in each cloud deck for 

both the MLR(RTN) and MLR(CCA-RTN) over moving 10-day periods in January and 
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July 1991. The first ten-day development period in each month involved PL GSM 

forecasts initialized at 12-hour intervals between 0000 UTC of day 8 and 1200 UTC 

of day 17 inclusive, along with RTNEPH cloud amounts on the transform grid at the 

corresponding PL GSM forecast verification times. The resulting cloud amount-NWP 

model predictor relationships were then applied to PL GSM forecasts initialized at 

0000 and 1200 UTC on day 18. This pattern of a 10-day development period followed 

by application on the very next day was conducted for 7 consecutive days (which we 

shall refer to as the verification period) ending with a day 14 to day 23 development 

period and a day 24 application. We based our choice of this approach on the 

hypothesis that the most representative sample of weather over which to design a 

regression relationship is the weather immediately prior to the forecast initialization 

date. The large forecast region (the hemisphere) allows us to use a rather limited 

temporal sample. This is because at any synoptic time, a number of weather and 

attendant cloud scenarios exist in the hemisphere. In the 10-day development 

ensemble, these scenarios should encompass any weather-cloud pattern seen in the 

hemisphere on the application day. 

We verified the ensemble of cloud diagnoses from PL GSM forecasts initialized 

on days 18-24 using all three methods~CCA, MLR(RTN), MLR(CCA-RTN)~against 

transformed RTNEPH cloud amounts at forecast verification times. In addition to the 

three previously-mentioned verification measures (bias, RMSE, MAE), we followed 

Cianciolo22 in computing Brier and 20/20 scores and sharpness. All three of these 

statistical quantities are derived from contingency tables, which we constructed for 

each deck and each forecast duration. In addition to hemispheric statistics, we 

conducted verifications and constructed contingency tables for the four separate 

subregions: 0-30N land and water surfaces, and 30-90N land and water surfaces. 

Once again, it should be stressed that while the verification was both hemispheric 

and regional, the cloud diagnosis development and application procedures were fully 

hemispheric only. As has been mentioned previously, it may be profitable in future 

work to investigate regional development and application of the cloud diagnosis 

procedures. 
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4.  EXPERIMENTAL RESULTS 

4.1 CCA Curves 

The CCA cloud amount-RH relationships, or CCA curves, were developed and 

used to diagnose cloudiness at 12-hour intervals from 0000 UTC of day 8 until 1200 

UTC of day 24 of both months. As mentioned earlier, preliminary experiments 

showed that the CCA method produced better diagnosis of cloudiness when the deck 

average RH was used than when deck maximum RH was used. Therefore, in all of 

the results involving CCA described below, we used the deck average RH to represent 

the PL GSM forecasts. 

In Figure 20, we show the CCA curves relating the 12-hour PL GSM RH 

forecasts with the transformed RTNEPH cloud amounts at the verification times for 

7-day development periods beginning 0000 UTC on 1 and 17 January 1991. Figure 

21 shows the same curves for the corresponding July periods. We chose to display 

these periods because they represent the first and nearly last development periods 

in our data sample. We observe a significant difference between the curves for the 

two development periods in middle and low decks in January and in the high deck 

in July. Use of the 01-07 Jan middle and low deck curves for 17-23 Jan would lead 

to an underestimation of cloud amount by as much as 12 percent. Similarly, using the 

earlier July high cloud curve for the latter period would produce too little cloud by 

as much as 7 percent. 

When we compare CCA curves of 12-hour forecasts with those of 48-hour 

forecasts in each month (Figures 22 and 23), we observe some noticeable differences. 

In January, the high and low deck curves shift toward lower humidities, while the 

middle deck moves to higher RH. This suggests that the PL GSM hemispheric RH is 

decreasing in the high and low decks and increasing in the middle deck between 12 

and 48 hours of forecast time. In contrast, in July, the RH in the low deck is 

increasing with forecast time while the middle deck experiences little change. This 

appears to be consistent with the zonal cross sections of RH bias shown in Figure 16. 
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Figure 20. CCA Curves Relating 12-Hour PL GSM RH Forecasts With the Transformed RTNEPH 
Cloud Amounts at the Verification Times for Seven-Day Development Periods Beginning 
0000 UTC 1 and 17 January 1991. 
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Figure 21.   Same as Figure 20 for July Periods. 
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Figure 22. CCA Curves Relating 12-Hour and 48-Hour PL GSM RH Forecasts With the 
Transformed RTNEPH Cloud Amounts at the Verification Times for a Seven-Day 
Development Period Beginning 0000 UTC 1 January 1991. 

69 



100 
12H. 48H. CCA CURVES FOR 01-07 JUL 91. DECK AVE RH 

x 

>- 

o 

Z) 
X 

ÜJ 
> 

ÜJ 

□ 
O 
A 

O 

HIGH 12H 
HIGH 48H 
MIDDLE 12H 
MIDDLE 48H 
LON 12H 
LOW 48H 

30   40   50   60   70 
CLOUD AMOUNT {'/.) 

80   90 100 

Figure 23.   Same as Figure 22 for the July Period. 
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Note in particular the decrease of negative (dry) low-level tropical bias between 12 

and 48 hours in July. Finally, the differences between January and July CCA curves 

reflect seasonal differences in both forecast RH and cloud amount distribution. 

4.2   Cloud Amount Predictors for 12-Hour Forecasts 

We now turn our attention to the variables identified as leading predictors by 

the MLR procedure. As previously stated, for each month, forecast duration, and 

cloud deck, we developed predictand-predictor relations for each of seven 10-day 

periods. These were the 10-day sets immediately prior to each of the seven days in 

the verification period, days 18-24 of each month. For each of the seven development 

periods, we looked at how the MLR(RTN) scheme prioritized the leading predictors 

for that sample, selected on the basis of correlation (for the first selectee) and 

multiple correlation with cloud amount. For the purposes of discussion, we devised 

a simple scoring scheme in which a variable identified in the top 10 predictors in a 

given development period is assigned two points, and variables in the second 10 

predictors are assigned one point. We added the point assignments over the seven 

development periods and designated two predictor categories: strong predictors (total 

points 2=10) and useful predictors (10> total points >5). Incidentally, for a given 

month, forecast duration, and cloud deck, we observed little day-to-day change in the 

identified predictors. We did see some minor changes in their order of priority. 

In Table 7, we list the strong and useful predictors for the three decks according 

to four categories: dynamic, humidity, geographic, and turbulence. In the 12-hour 

forecasts of both months, we see that RH is a strong predictor in all three decks. 

Apart from RH, there are significant differences in the strong predictors between the 

two months. For example, dry static stability is a strong predictor in all three decks 

in July, but only in the low deck in January, when moist static stability is strong in 

low and high decks. Similarly, minimum stability in a 3X3X3 gridpoint array is a 

strong low and middle deck predictor in January, but doesn't appear at all in July's 

leading predictors. Geographic predictors play a much greater role in July 12-hour 
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forecasts. Evaporation rate is a useful predictor in every deck for both months, and 

is a strong predictor in three cases. Over all three decks, the five strongest predictors 

for 12-hour forecasts are: January-relative humidity, moist static stability, maximum 

boundary layer wind speed in a 3X3 array, percent surface water, and minimum dry 

static stability in a 3X3X3 array; July-relative humidity, dry static stability, 

evaporation rate, hours of darkness before forecast valid time t, and sine of latitude. 

One of the stated purposes of this study was to determine the degree to which 

other variables may supplement a single humidity variable as predictors of cloud 

amount. To do this, we compared the cloud amount correlation of the most highly 

correlated humidity variable with the total correlation of the 20 leading predictors. 

The increase in correlation gives a quantitative measure of the amount of additional 

information on cloud amount distribution available in the supplemental variables. 

Among humidity variables, the single most highly correlated variable and their 

correlations for January are: low-RH2 (0.35), middle-RH (0.32), high-RH4 (0.26); for 

July: low-condensation pressure spread at t-6 hours (-0.32); middle-precipitable 

water (0.42), high~RH (0.17). We computed the 7-day average of the total correlation 

of the linear combination of the top 20 predictors. The average values for January 

were: low~0.55, middle-0.58, high-0.39; for July: low~0.44, middle-0.58, high-0.34. 

On a percentage basis, the supplemental predictors increased the correlation most in 

the July high deck, and least in the July low and middle decks. 

4.3   12-Hour Cloud Forecast Verification Statistics 

Next, we look at the statistical verification scores for the 12-hour cloud forecasts. 

These forecasts were diagnosed by applying each of the seven single-day predictand- 

predictor relationship sets to the corresponding verification period day's PL GSM 

forecast. Tables 8 and 9 list the scores computed for the ensemble of 14 twice-daily 

forecasts made over the 7-day verification period in January and July respectively. 

In the following discussion, we will first focus on just the verification results for the 

entire hemisphere (0-90N in Tables 8 and 9). We choose to emphasize the verification 
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over the whole hemisphere because, for the CCA, MLR(RTN), and MLR(CCA-RTN) 

procedures, this was the region of development. We can only be sure that the 

performance of each of the procedures is truly representative of the actual skill over 

the region of their development. However, their verification in subregions can give 

us information on the unique characteristics of the subregion and the potential for 

improvement in subregional applications of the procedures. We shall discuss the 

subregional results following our discussion of the hemispheric results. 

Given the nature of the CCA and MLR procedures, we expect that, when verified 

over the region of their development, their forecast biases will be small. We see from 

the tables that bias exceeds 2 percent cloud amount only in July low clouds for CCA 

and MLR(RTN). Such small values suggest that there is no systematic error (repeated 

errors of the same sign) in the cloud forecast procedures. 

As previously mentioned, we feel that mean absolute error (MAE) may be the 

single best measure of forecast skill for point-by-point forecast applications. MAE 

identifies the average departure of the point forecast from the observed cloud amount, 

regardless of sign. For example, a MAE of 20 percent cloud cover would indicate that 

for a forecast at any point, on the average the forecasted value would differ from the 

verifying observed value by 20 percent cloud amount. 

The most striking feature of the MAE results is the much lower error in the high 

deck. We see that this is true for all score categories in the table beginning with 

MAE. The primary reason for this can be seen in Figure 8, the transformed RTNEPH 

cloud amount distributions. Notice that there are many more cases of no cloud in the 

high deck, and the remaining cloudy cases are largely restricted to lower cloud 

amounts. Thus, high cloud is much more nearly a binary predictand than are low and 

middle clouds (with "no" being much more likely than "yes") and cloudy high deck 

cases are restricted to a more limited range of cloud amounts. All forecast methods 

perform at their best under such conditions, because any forecast of clear 

or nearly clear is very likely to be correct. We believe that the much higher skill 

associated with high clouds in our study is due at least partly to the probable 

underspecification of high cloud amounts in our study, as discussed in Section 3.3. 
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Table 8.   12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jan 91-1200 UTC 24 Jan 91 

Deck    Method 0-30NLand 0-30N Water       30-90N Land       30-90N Water 

Bias (% Cloud Amount) 

0-90N 

High    CCA 0.6 
MLR(RTN) 2.7 
MLR(CCA-RTN) 2.8 
Persistence 0.0 
Random 46.9 

Middle CCA 2.7 
MLR(RTN) -9.1 
MLR(CCA-RTN)  1.0 
Persistence 0.8 
Random 23.8 

Low      CCA -3.7 
MLR(RTN) -9.2 
MLR(CCA-RTN) -1.6 
Persistence 0.6 
Random 22.6 

0.8 -5.1 0.8 -0.8 

0.6 0.6 3.5 1.6 
1.3 -1.3 0.9 0.6 

-0.1 -0.2 -0.2 -0.1 
47.8 40.1 41.7 43.9 

15.5 26.4 -7.5 -0.2 
2.5 -8.8 5.4 -0.9 
2.8 5.1 -3.6 1.5 

-0.6 0.5 -0.6 -0.1 
9.0 23.6 -9.1 9.3 

-7.9 16.1 0.5 1.4 
4.2 -8.6 8.0 0.5 
1.8 4.8 -0.5 1.6 

-0.7 0.6 -0.1 0.0 
6.0 20.5 -5.1 8.4 

Mean Absolute Error (% Cloud Amount) 

High     CCA 6.1 
MLR(RTN) 7.3 
MLR(CCA-RTN)  7.7 
Persistence 4.2 
Random 48.3 

Middle CCA 22.6 
MLR(RTN) 20.2 
MLR(CCA-RTN)23.1 
Persistence 21.0 
Random 43.2 

Low      CCA 23.6 
MLR(RTN) 22.0 
MLR(CCA-RTN)23.4 
Persistence 24.9 
Random 40.1 

4.4 12.3 10.8 8.5 
4.0 13.2 12.6 9.1 
4.9 13.4 11.5 9.3 
3.8 13.4 11.9 9.0 

49.1 45.2 47.1 47.4 

29.1 38.6 37.3 33.3 
26.0 23.1 27.0 24.9 
29.2 27.4 30.3 28.4 
25.8 25.0 25.2 24.9 
41.1 41.9 39.1 41.0 

31.6 33.6 33.1 31.7 
28.2 23.1 24.5 25.2 
30.4 27.6 27.7 28.2 
31.3 24.3    . 25.0 26.8 
37.3 41.4 38.6 39.0 
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Table 8.  12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jan 91 - 1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land 

RMSE (% Cloud Amount) 

30-90N Water 0-90N 

High     CCA 17.4 
MLR(RTN) 13.1 
MLR(CCA-RTN) 15.5 
Persistence 12.7 
Random 56.3 

Middle CCA 34.0 
MLR(RTN) 31.6 
MLR(CCA-RTN)32.2 

Persistence 33.4 

Random 51.7 

Low      CCA 34.6 

MLR(RTN) 31.3 
MLR(CCA-RTN)32.3 
Persistence 35.3 
Random 48.4 

15.2 25.2 24.1 21.1 
11.4 20.5 19.2 16.7 
13.0 23.0 22.5 19.2 
14.9 25.1 26.9 22.0 
57.1    • 53.5 55.2 55.5 

40.8 50.1 48.3 45.1 
34.4 33.8 36.3 34.5 
35.7 36.3 39.2 36.6 
37.4 37.8 35.0 36.4 
49.5 50.3 47.3 49.4 

39.9 46.5 44.0 42.5 
34.3 33.8 33.6 33.7 
36.7 37.7 36.7 36.6 
40.7 36.8 34.7 37.3 
45.5 49.8 46.9 47.4 

Brier Score (perfect = 0) 

High    CCA 0.031 

MLR(RTN) 0.017 
MLR(CCA-RTN) 0.024 
Persistence 0.016 
Random 0.317 

Middle CCA 0.116 
MLR(RTN) 0.100 
MLR(CCA-RTN) 0.104 
Persistence 0.112 
Random 0.267 

Low      CCA 0.119 

MLR(RTN) 0.098 

MLR(CCA-RTN) 0.104 
Persistence 0.124 
Random 0.235 

0.023 0.064 0.058 0.045 
0.013 0.042 0.037 0.028 
0.017 0.053 0.051 0.037 
0.022 0.063 0.073 0.048 
0.326 0.286 0.305 0.308 

0.166 0.251 0.233 0.203 
0.118 0.114 0.132 0.119 
0.127 0.132 0.154 0.134 
0.140 0.143 0.123 0.133 
0.245 0.253 0.224 0.244 

0.159 0.216 0.194 0.181 
0.117 0.114 0.113 0.113 
0.134 0.142 0.135 0.134 
0.166 0.135 0.121 0.139 
0.207 0.248 0.220 0.224 
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Table 8.   12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jan 91 - 1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land     30-90N Water 

20/20 Score (perfect = 1) 

High    CCA 0.901 
MLR(RTN) 0.929 
MLR(CCA-RTN) 0.915 
Persistence 0.930 
Random 0.242 

Middle CCA 0.618 
MLR(RTN) 0.651 
MLR(CCA-RTN) 0.599 
Persistence 0.655 
Random 0.298 

Low      CCA 0.598 
MLR(RTN) 0.606 
MLR(CCA-RTN) 0.581 
Persistence 0.563 
Random 0.326 

Normalized Sharpness (perfect = 1) 

0-90N 

0.934 0.800 0.825 0.864 
0.962 0.815 0.822 0.880 
0.950 0.827 0.844 0.883 
0.944 0.776 0.821 0.858 
0.236 0.275 0.257 0.253 

0.528 0.413 0.418 0.475 
0.529 0.598 0.525 0.558 
0.437 0.489 0.469 0.476 
0.577 0.602 0.567 0.589 
0.320 0.312 0.339 0.321 

0.437 0.485 0.474 0.476 
0.442 0.594 0.561 0.532 
0.414 0.515 0.519 0.487 
0.462 0.608 0.567 0.545 
0.359 0.315 0.345 0.340 

High    CCA 1.005 0.985 1.100 0.982 1.015 

MLR(RTN) 1.016 1.006 1.009 0.892 0.976 
MLR(CCA-RTN) 1.007 0.997 1.105 0.994 1.024 
Persistence 0.999 1.001 1.006 1.005 1.003 
Random 0.475 0.463 0.525 0.492 0.488 

Middle CCA 0.899 1.004 0.928 1.079 0.991 
MLR(RTN) 0.926 0.714 0.889 0.931 0.842 
MLR(CCA-RTN) 0.774 0.480 0.609 0.776 0.623 
Persistence 0.994 1.006 0.997 1.001 1.001 
Random 0.569 0.622 0.593 0.680 0.623 

Low      CCA 1.130 0.784 1.050 1.098 0.986 
MLR(RTN) 0.966 0.380 0.846 1.058 0.766 
MLR(CCA-RTN) 0.912 0.434 0.758 0.885 0.704 
Persistence 0.995 1.002 0.999 1.000 1.000 

Random 0.835 0.830 0.883 0.770 0.826 
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Table 9.   12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jul 91 - 1200 UTC 24 Jul 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land 

Bias (% Cloud Amount) 

30-90N Water 0-90N 

High CCA 1.2 
MLR(RTN) 5.5 
MLR(CCA-RTN) 2.4 
Persistence 0.2 
Random 43.3 

Middle CCA -0.7 

MLR(RTN) 3.3 
MLR(CCA-RTN) 2.7 
Persistence -0.3 
Random -3.5 

Low      CCA -4.6 

MLR(RTN) 3.3 
MLR(CCA-RTN)  0.3 
Persistence -0.2 
Random 8.6 

High     CCA 12.0 
MLR(RTN) 12.3 

MLR(CCA-RTN) 11.8 
Persistence 10.1 
Random 46.6 

Middle CCA 29.2 

MLR(RTN) 24.1 
MLR(CCA-RTN)27.8 
Persistence 26.0 
Random 42.7 

Low      CCA 31.1 

MLR(RTN) 26.0 
MLR(CCA-RTN)27.3 
Persistence 31.0 
Random 37.3 

-0.7 -2.8 3.4 0.2 
1.3 2.7 -0.2 1.6 
1.0 0.3 2.6 1.4 
0.4 -0.2 0.0 0.1 

45.0 40.8 47.5 44.5 

16.8 15.8 6.5 0.0 
6.5 -3.1 -0.8 1.6 
0.3 4.1 1.6 1.9 

-0.7 -0.8 0.6 -0.2 
6.2 14.3 6.0 3.0 

-2.4 -9.4 22.7 3.3 
7.7 -3.7 0.5 2.2 
0.9 0.4 4.6 1.8 
0.2 -0.9 0.3 0.0 

-1.5 8.9 7.8 4.9 

Mean Absolute Error (% Cloud Amount) 

7.4 12.2 7.4 9.1 
8.3 11.7 4.0 8.2 
8.9 12.7 6.7 9.5 
7.8 11.6 4.1 7.6 

48.3 44.7 48.6 47.3 

33.5 32.6 32.1 32.5 
26.2 22.6 25.7 25.0 
29.2 26.9 28.8 28.4 
25.2 26.7 29.3 27.1 
42.1 40.5 40.2 41.1 

34.6 30.0 37.8 34.1 
30.2 23.5 27.4 27.3 
31.3 27.6 29.8 29.6 
36.8 30.1 30.9 32.6 
37.7 38.2 37.0 37.6 
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Table 9.   12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jul 91 - 1200 UTC 24 Jul 91 

Deck    Method 0-30NLand 0-30N Water       30-90N Land       30-90N Water        0-90N 

RMSE (% Cloud Amount) 

High    CCA 25.9 21.4 23.9 18.8 21.8 
MLR(RTN) 18.2 17.0 16.8 9.9 15.3 
MLR(CCA-RTN)20.8 19.0 21.7 15.9 19.0 
Persistence 22.6 22.0 21.6 12.6 19.2 
Random 54.8 56.3 53.0 56.6 55.4 

Middle CCA 44.1 45.3 44.4 43.7 44.3 
MLR(RTN) 34.6 36.8 31.5 34.8 34.7 
MLR(CCA-RTN)36.5 37.7 36.0 38.2 37.3 
Persistence 39.0 37.8 37.9 40.5 38.9 
Random 50.9 50.4 48.8 48.5 49.5 

Low      CCA 41.4 42.4 41.2 47.4 43.6 
MLR(RTN) 34.6 37.3 31.2 34.1 34.6 
MLR(CCA-RTN)35.4 37.7 36.2 36.6 36.8 
Persistence 41.3 46.8 40.2 40.1 42.5 
Random 45.4 45.9 46.5 45.1 45.8 

Brier Score (perfect = 0) 

High    CCA 0.067 0.046 0.057 0.036 0.047 
MLR(RTN) 0.033 0.029 0.028 0.010 0.023 
MLR(CCA-RTN) 0.043 0.036 0.047 0.025 0.036 
Persistence 0.051 0.049 0.047 0.016 0.037 
Random 0.300 0.317 0.280 0.320 0.307 

Middle CCA 0.169 0.205 0.197 0.191 0.196 
MLR(RTN) 0.120 0.136 0.099 0.121 0.121 
MLR(CCA-RTN) 0.133 0.142 0.129 0.146 0.139 
Persistence 0.152 0.143 0.144 0.164 0.151 
Random 0.259 0.254 0.238 0.235 0.245 

Low      CCA 0.171 0.180 0.170 0.225 0.190 
MLR(RTN) 0.119 0.139 0.098 0.116 0.120 
MLR(CCA-RTN) 0.125 0.142 0.131 0.134 0.135 
Persistence 0.170 0.219 0.161 0.161 0.181 
Random 0.206 0.211 0.216 0.203 0.209 
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Table 9.  12-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jul 91 - 1200 UTC 24 Jul 91 

Deck    Method 0-30NLand 0-30N Water       30-90N Land     30-90N Water 

20/20 Score (perfect = 1) 

0-90N 

High     CCA 0.805 

MLR(RTN) 0.834 
MLR(CCA-RTN) 0.837 
Persistence 0.835 
Random 0.259 

Middle CCA 0.530 

MLR(RTN) 0.571 

MLR(CCA-RTN) 0.507 
Persistence 0.581 
Random 0.300 

Low      CCA 0.469 

MLR(RTN) 0.516 
MLR(CCA-RTN) 0.494 
Persistence 0.475 
Random 0.356 

High     CCA 1.004 

MLR(RTN) 0.914 
MLR(CCA-RTN) 1.004 
Persistence 0.999 
Random 0.497 

Middle CCA 0.918 
MLR(RTN) 0.837 
MLR(CCA-RTN) 0.715 
Persistence 1.008 
Random 0.587 

Low      CCA 1.068 

MLR(RTN) 0.752 
MLR(CCA-RTN) 0.685 
Persistence 1.006 
Random 0.779 

0.884 0.793 0.882 0.853 
0.904 0.872 0.964 0.908 
0.901 0.821 0.905 0.876 
0.887 0.800 0.938 0.879 
0.242 0.282 0.242 0.254 

0.476 0.486 0.486 0.486 
0.549 0.586 0.532 0.555 
0.471 0.525 0.501 0.497 
0.598 0.562 0.516 0.559 
0.309 0.327 0.327 0.318 

0.383 0.504 0.382 0.421 
0.432 0.560 0.473 0.484 
0.389 0.514 0.436 0.444 
0.395 0.488 0.466 0.449 
0.354 0.347 0.361 0.355 

Normalized Sharpness (perfect = 1) 

0.988 1.076 0.955 1.000 
0.982 1.025 1.037 1.003 
0.998 1.077 0.975 1.010 
0.999 1.004 1.001 1.001 
0.468 0.525 0.471 0.485 

0.903 1.028 1.070 0.983 
0.788 0.794 0.792 0.795 
0.608 0.737 0.808 0.708 
0.999 0.999 0.998 0.999 
0.579 0.627 0.656 0.614 

0.655 1.153 1.132 0.960 
0.547 0.697 0.468 0.581 
0.337 0.828 0.466 0.534 
0.999 0.992 1.003 0.999 
0.728 0.719 0.791 0.748 
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In comparing the MAE for the various methods, we find that MLR(RTN) and 

persistence lead in equally low MAE in January high and middle decks, MLR(RTN) 

exhibits lowest MAE for January low and July middle and low decks, and persistence 

is better in the July high deck. MAE for MLR(CCA-RTN) is never lower than 

MLR(RTN), and is lower than persistence only in the July low deck. The CCA method 

is competitive only in the high deck for both months. 

RMSE and Brier score are similar in that the error penalty increases as the 

square of the departure of the forecast from the observed. Not surprisingly, they give 

the same results in the rank ordering of the methods. In all decks in both months, 

MLR(RTN) has the lowest RMSE and Brier score of any of the forecast methods. In 

all but the January middle deck, MLR(CCA-RTN) performs better than persistence 

in RMSE and Brier score. These results are somewhat to be expected because the 

regression equations are derived on the basis of minimizing mean squared errors. As 

seen in Table 6, the original MLR(RTN) procedure which used the standard 

regression slope showed even lower RMSEs than the modified slope method used in 

these experiments. Persistence gives smaller RMSEs and Brier scores than the CCA 

method in all but the January high deck. 

The 20/20 score gives the fraction of points in which the forecasted cloud amount 

is within 20 percent of the observed. As in MAE, the rank ordering of skill varies by 

month and deck. In January, MLR(CCA-RTN) has the highest score for the high deck, 

and persistence scores best for middle and low decks. In July, MLR(RTN) yields the 

highest 20/20 scores for the high and low decks, and is virtually tied with persistence 

in the middle deck. CCA scores the lowest of the four methods in every month-deck 

category but one, where it is second lowest. Another observation we make about 20/20 

scores is that almost without exception, they decrease from high deck through middle 

deck to low deck for persistence and the MLR methods in both months. In RMSE and 

Brier scores, this trend is true of persistence but not the MLR procedures. Looking 

back at MAE, we find that the trend of decreasing skill with decreasing deck altitude 

is like that of 20/20 score. MAE and 20/20 are similar in that both are a linear 

measure of agreement with the observed. 
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Sharpness in a cloud amount field gives the fraction of points in which the cloud 

amount is within 20 percent of 0 percent or 100 percent. We desire a forecast method 

which minimizes the loss of sharpness with respect to that of the observed cloud 

distribution. Thus, we devised normalized sharpness (NS), the ratio of forecast 

sharpness to observed sharpness as a measure of the loss (NS <1) or gain (NS >1) of 

sharpness in the forecast process. The NS of persistence is a measure of the 

constancy of the observed cloud amount distribution between (in this case) 12-hour 

time periods. It is apparent from the tables that there is essentially no change in the 

percentage of the total of clear, nearly clear, nearly overcast, and overcast points 

between consecutive 12-hour interval RTNEPH cloud distributions. Interestingly, the 

CCA also essentially maintains the sharpness of the observed cloud cover 

distribution. This is probably because the development of the scheme is based on the 

frequency of occurrence of the observed cloud amount categories. This fact dictates 

that in application, the observed cloud amount distribution is preserved. 

Unfortunately, this fact did not benefit the MLR(CCA-RTN) in regards to sharpness 

relative to MLR(RTN). In all month-deck categories, MLR(RTN) sharpness is in 

better agreement with the observed sharpness than MLR(CCA-RTN) sharpness. 

We included statistics of the verification of a random forecast of cloud amount 

as a skill/no skill reference. This would be equivalent to picking a number between 

0 and 100 out of a hat for a given gridpoint and time and using that as your cloud 

amount forecast. The four forecast methods verified in the tables show varying 

amounts of skill relative to a random selection in all of the skill measures (MAE, 

RMSE, Brier, 20/20). However, in low cloud decks in both months, the random cloud 

amount forecast fields (which has by definition an equal portion of the distribution 

in all 5 percent cloud amount categories) display greater sharpness than forecast 

fields produced by the MLR procedures. We note that unlike the MLR fields that 

decrease in NS with decreasing deck altitude, the random fields increase in NS from 

high deck to low deck. This is because observed sharpness is lower at lower decks in 

both months (see Figure 8) while the random field sharpness is the same in all decks. 

However, except for the MLR(CCA-RTN) forecasts in January, the MLR procedures 
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were not able to capitalize on the lower observed low deck sharpness to improve their 

NS scores. They, like the RTNEPH fields from which they are derived, exhibit 

decreasing sharpness with decreasing deck altitude, but at a much faster rate. 

In comparing the scores between the two months, we find that for all scores, 

persistence is a better forecast of high clouds in July, but is a better forecast of 

middle and low clouds in January. This pattern does not hold for the other three 

forecast methods. CCA shows better high and low cloud forecast scores for January, 

and better middle cloud forecast scores for July. MLR(RTN) produces more accurate 

high cloud forecasts in July, better low cloud scores in January, and about the same 

scores in both months for middle cloud. MLR(CCA-RTN) scores about the same in all 

three decks for both months except in 20/20 score, in which high and low cloud 

forecast scores are better in January and middle clouds have lower scores in July. 

Finally, the MLR methods produce low deck cloud diagnoses that have considerably 

higher normalized sharpness in January than July. It is important to state that these 

trends hold only for this single seven-day verification period. On the basis of a single 

week, we cannot make any definite conclusions about the seasonal behavior of the 

various forecast methods. 

We now briefly examine the subregional verification statistics for the 12-hour 

cloud amount forecasts. We will discuss only the most outstanding features seen in 

comparing the scores in the subregions. First, we observe that when verification takes 

place over a region that is only a subset of a development region, the bias increases 

for CCA, MLR(RTN), and MLR(CCA-RTN). As previously stated, we can only be sure 

that the mean error is minimized only over the development region. CCA suffers the 

most from this effect, and MLR(CCA-RTN) is affected least of the three. Interestingly, 

though Table 3 shows a definite trend toward greater middle and low RTNEPH 

cloudiness over water surfaces than over land surfaces (especially in January), only 

CCA has a tendency to overpredict over land and underpredict over water. In fact, 

in January, MLR(RTN) tends to underpredict over land and overpredict over water~a 

very surprising result. Because we have already stated that subregional application 

of the statistical forecasting procedures would virtually eliminate subregional biases, 
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we will discuss this subject no further. 

In MAE and 20/20 score, we see a clear pattern of land-water forecast 

performance characteristics. In both months, with only two exceptions, (CCA middle 

cloud, 30-90N; July persistence middle cloud; 0-30N) high cloud is better predicted 

by all methods over water surfaces, while middle and low clouds are most accurately 

forecast over land. This pattern tends to be true for RMSE and Brier score as well, 

but with more exceptions. One possible explanation for this pattern may be found in 

the transformed RTNEPH standard deviation statistics in Table 3. In the middle and 

low decks in January, the RTNEPH clouds exhibit greater variance over water 

surfaces than over land, making it harder for forecast procedures to predict 

accurately over water. However, the greater variance over land in high cloud is 

apparent only in 30-90N. Furthermore, no clear trend of water vs. land middle and 

low cloud variance is apparent in July. We cannot conclude, therefore, that regions 

of higher observed cloud variance will necessarily lead to poorer cloud prediction 

scores on the basis of our two 1-week samples. We can speculate that the land-water 

differences in verification scores may suggest a potential for improvement over both 

surfaces using a subregional application of the statistical forecast methods. 

A final outstanding feature of the subregional comparisons is the significant loss 

of sharpness in low cloud forecasts produced by the MLR procedure over the tropical 

oceans in both months, and over the extratropical oceans in July. We speculate that 

the rather homogenous surface evaporation rates over warm oceans in the PL GSM 

may have led to a more even distribution of cloud amounts over these regions. This 

speculation is supported by the importance of surface evaporation rate in the MLR 

procedure as a predictor of low clouds in both months (see Table 7) and the fact that 

MLR low cloud sharpness is high over cold oceans. Improved surface evaporation 

parameterization in the model may lead to an improvement in low cloud forecasting 

over warm oceans. 
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4.4   12-Hour Cloud Forecast Maps 

We now consider a series of regional cloud distribution maps to help us examine 

the performance of the cloud forecast methods subjectively. In real applications of 

cloud forecasting methods, it is important that the decision makers have useful and 

accurate depictions of future cloud distributions in their theater of interest. In the 

following discussions, we point out the strengths and weaknesses of the subject 

forecast methods. In all cases, we used the transformed RTNEPH as our standard. 

4.4.1 0000 UTC 19 JANUARY 1991 NORTHEASTERN ATLANTIC OCEAN CASE 

Figure 24 displays the high cloud deck distribution over the northeastern 

Atlantic Ocean and western Europe on 0000 UTC 19 January 1991 represented by 

the transformed RTNEPH and the 12-hour forecast valid at this time and date 

produced by the three forecast methods: CCA, MLR(RTN), and MLR(CCA-RTN). The 

most obvious difference between the forecasts and the RTNEPH is the extension of 

the eastern cloud band southward by the forecasts. The position of this extension 

coincides with the RTNEPH middle cloud deck distribution as we saw in Figure 18. 

CCA and MLR(CCA-RTN) produce cloud amounts of >50 percent throughout much 

of this band, including over the North Sea, where the RTNEPH displays >50 percent 

cloud amount. In contrast, MLR(RTN) produces >50 percent cloud in this band only 

at the extreme northern end. This tendency of MLR(RTN) to forecast lesser high 

cloud amounts is evident also in the more western cloud mass (west of Ireland and 

the United Kingdom). Here, CCA and MLR(CCA-RTN) include an area of >80 percent 

cloud cover as is present in RTNEPH, while MLR(RTN) does not. In summary, CCA 

and MLR(CCA-RTN) are similar in their production of high cloud which equals or 

exceeds RTNEPH amounts, while MLR(RTN) tends to underpredict high cloud 

amounts in this case. 

In Figure 25, we display the middle cloud distribution for this case. In the 

middle cloud deck, we find that each forecast method produces unique features. The 
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Figure 24. High Deck Cloud Amounts (%) in the Northeastern Atlantic Ocean Region for 0000 UTC 
19 January 1991 from (a) Transformed RTNEPH, (b) 12-Hour CCA Forecast, (c) 12-Hour 
MLR(RTN) Forecast, (d) 12-Hour MLR(CCA-RTN) Forecast. 
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Figure 25.  Same as in Figure 24 for Middle Deck Cloud Amounts. 
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CCA forecast is characterized by extremes of cloud amount in the various sectors. The 

entire eastern cloud band exceeds 80 percent, the lesser cloud region west of the 

Iberian peninsula is extensively <20 percent, and the western cloud mass is larger 

than observed and is made up entirely of cloud amounts >80 percent. As a result of 

all of this, the CCA cloud amount gradients are sharper than in the RTNEPH. 

Finally, the CCA forecast produces an apparent spurious extension of middle cloud 

amount in the Mediterranean Sea and northern Africa. This latter feature is 

apparent in both MLR forecasts as well. We plotted the middle deck average PL GSM 

forecast RH and observed this same appendage of high humidities. By contrast with 

CCA, neither MLR forecast represents the relatively cloud-free region NW of the 

Iberian peninsula as seen in the RTNEPH. Neither forecast represents the region of 

between 50 and 80 percent cloud amount NW of the United Kingdom. In general, the 

two MLR schemes produce too much cloud in the <80 percent areas over the ocean. 

Over Europe, the position of the leading edge of the cloud band is better represented 

by the MLR methods than by CCA. 

Most of the same tendencies of the forecast schemes in the middle deck are also 

present in the low deck (Figure 26). CCA produces greater extremes in both lesser 

and greater cloud amount sectors than RTNEPH, resulting in stronger gradients. 

This is a reflection of the high CCA NS scores seen in Table 8. MLR(CCA-RTN) and 

MLR(RTN) both tend to produce too much cloudiness over the ocean. MLR(CCA-RTN) 

yields much more detail than does MLR(RTN), but neither captures the marine cloud- 

free region (NW of the Iberian Peninsula) and both tend to produce larger regions 

with >80 percent cloud cover than are observed. The MLR methods represent low 

cloudiness over the European continent better than over the oceans. 

4.4.2 0000 UTC 23 JULY 1991 NORTHEASTERN ATLANTIC OCEAN CASE 

High deck cloud amount maps for a summertime case over exactly the same 

region are shown in Figure 27. As in the wintertime case just discussed, CCA and 

MLR(CCA-RTN) produce too much high cloud and MLR(RTN) not enough when 
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Figure 26.  Same as in Figure 24 for Low Deck Cloud Amounts. 
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Figure 27. High Deck Cloud Amounts (%) in the Northeastern Atlantic Ocean Region for 
0000 UTC 23 July 1991 from (a) Transformed RTNEPH, (b) 12-Hour CCA 
Forecast, (c) 12-Hour MLR(RTN) Forecast, (d) 12-Hour MLR(CCA-RTN) Forecast. 
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compared to RTNEPH. In fact, MLR(RTN) produces no cloud amounts in excess of 

20 percent in this case. On the other hand, CCA and MLR(CCA-RTN) produce areas 

of >80 percent cloud cover where less than 20 percent is specified by RTNEPH. Only 

the cloud mass over Iceland coincides with a similar area of cloudiness in the 

RTNEPH. 

In the middle cloud deck (Figure 28), CCA greatly overextends the area of >80 

percent cloud amount (centered west of Ireland and the United Kingdom) relative to 

RTNEPH. The <20 percent slot SW of the cloud mass is too far SW and too narrow, 

and RTNEPH's <20 percent slot over the United Kingdom and Ireland are not 

represented. In addition, CCA creates a major cloud mass over the western 

Mediterranean Sea and northern Africa that is not represented by RTNEPH. Over 

the region, CCA produces a positive bias of cloudiness. Characteristically, MLR(RTN) 

produces flatter gradients than RTNEPH, but in this case, positions the lesser and 

greater values more correctly than CCA. The <50 percent slot westward of the major 

cloud mass coincides well with the <20 percent slot in the RTNEPH, and even gives 

some indication of having <20 percent or slightly more than 20 percent areas in it. 

Also, the >80 percent area is positioned nearly correctly SE of Iceland, However, the 

>80 percent band in the MLR(RTN) SW and W of Ireland is too small and located too 

far to the NE (right over where the RTNEPH has a <20 percent region). MLR(RTN) 

produces spurious cloudiness over the Mediterranean and northern Africa also, but 

the amounts are lower than CCA and MLR(CCA-RTN) due to its tendency to 

underpredict smaller isolated cloud features. Finally, MLR(CCA-RTN) again 

resembles CCA but with reduced gradients and overall reduced cloudiness. This last 

fact precludes MLR(CCA-RTN) from properly representing the >80 percent areas in 

the RTNEPH over the Atlantic. 

In the low cloud deck (Figure 29), we see this same tendency of the CCA forecast 

to produce too much cloud over the ocean. The patterns are similar in the MLR(CCA- 

RTN) forecasts but the amounts are reduced by about one contour interval (30 

percent) in most oceanic locations. The MLR(RTN) scheme produces even less 

cloudiness, and significantly underpredicts RTNEPH cloud amounts SW and W of Ireland. 
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Figure 28.  Same as in Figure 27 for Middle Deck Cloud Amounts. 
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Figure 29.  Same as in Figure 27 for Low Deck Cloud Amounts. 
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In summary, over this region in both seasons, CCA produced too much oceanic 

cloudiness (especially in summertime) and produced sharper gradients than were 

observed. The patterns of MLR(CCA-RTN) cloudiness were similar to those of CCA 

but with reduced cloud amounts and flatter gradients. MLR(RTN) tended to 

underpredict cloud amounts over the oceans, and had flatter gradients than the other 

two methods, but positioned the relative maxima and minimum better. 

4.4.3   1200 UTC 23 JANUARY 1991 NORTH CENTRAL ASIA CASE 

We next consider the 12-hour cloud predictions over an extratropical land surface 

area for a wintertime case. In contrast to the largely oceanic area discussed in the 

two previous sections, the present area consists almost entirely of land surface. This 

region is bounded in longitude by 90E and 130.5E, and in latitude by 40.5N and 

69.75N. It was chosen because it was a wholly land surface region that had virtually 

no missing RTNEPH data and an interesting cloud scene. 

In Figure 30, we show the analyzed and predicted high clouds in this region for 

this case. In all three forecast methods, high cloud amount is underpredicted. This 

is in contrast to the overprediction by CCA and MLR(CCA-RTN) seen in the 

wintertime oceanic case described above. The RTNEPH depiction shows that 

significant amounts of high cloud can be manifest in limited regions, even though the 

hemispheric average may be underspecified by the transformed RTNEPH. However, 

the fact that all three forecast methods are developed over the entire hemisphere 

suggests that the statistical methods may tend to overpredict where few high clouds 

are present and underpredict in the presence of abundant observed cloudiness. CCA 

and MLR(CCA-RTN) are once again very similar in their appearance, both essentially 

missing the most eastern and southern cloud masses. MLR(RTN) smooths out the 

structure and variability of the cloud masses, but does put the major features in 

generally the correct location (except for extension up into the NW portion of the 

region). 

In the middle deck (Figure 31), the RTNEPH depiction shows two distinct areas 

94 



>smij 

^p 

/Xt* 

d $. 

v^ 
figure 30.     High Deck Cloud Amounts (%) in the North Central Asia Region for 1200 UTC 

23 January 1991 from (a) Transformed RTNEPH, (b) 12-Hour CCA Forecast, 
(c) 12-Hour MLR(RTN) Forecast, (d) 12-Hour MLR(CCA-RTN) Forecast. 
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Figure 31.  Same as in Figure 30 for Middle Deck Cloud Amounts. 
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that are nearly overcast separated by a relatively clear slot in between. All three 

forecast methods replicate this pattern in a relative sense, but with varying errors 

in the magnitudes. CCA reproduces the southern cloud mass quite well but creates 

a northern mass that has too large an area in its >80 percent section, and wrongly 

extends significant cloudiness well into the NE corner. MLR(CCA-RTN) better 

restricts the areal extent of this cloud mass but underpredicts the amounts in both 

sectors. This underprediction is even more evident in the MLR(RTN) forecast. In the 

middle deck, the CCA produces the best overall forecast in this case from a subjective 

standpoint. 

All three forecast methods locate the bulk of the major low cloud mass (Figure 

32) too far northward. As in the middle deck, CCA tends to create too large an area 

of >80 percent cloud amount. MLR(CCA-RTN) once again restricts the size of the area 

and magnitudes of the densest cloudiness relative to CCA. MLR(RTN) produces an 

inadequate cloud representation, revealing a cloud distribution that is nearly 

homogenous and grossly underpredicted. We speculate that this prediction method's 

dependence on meteorological variables other than RH may have actually hurt it in 

this case because of the very homogenous snow/ice covered land surface affecting 

these variables. They were obviously not influenced as much by the synoptic-scale 

disturbance moving into the area as RH was. 

4.4.4  0000 UTC 23 JULY 1991 NORTH CENTRAL ASIA CASE 

Figure 33 shows the analysis and forecast high cloud amount distribution over 

the same region as just discussed, but for a summertime case. As before, the CCA 

and MLR(CCA-RTN) forecasts look very similar with somewhat greater maxima 

present in CCA. The RTNEPH cloudiness appears to be less organized than that of 

the forecasts. The forecasts especially seem to miss the spotty cloudiness in the NE 

and SW quadrants of the regions. 

The transformed RTNEPH depiction of middle clouds (Figure 34) shows a much 

more organized pattern of cloudiness than in the high cloud. We see a mass of 
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Figure 32.  Same as in Figure 30 for Low Deck Cloud Amounts. 

98 



figure 33 High Deck Cloud Amounts (%) in the North Central Asia Region for 0000 UTC 
23 July 1991 from (a) Transformed RTNEPH, Ob) 12-Hour CCA Forecast, 
(c) 12-Hour MLR(RTN) Forecast, (d) 12-Hour MLR(CCA-RTN) Forecast. 

99 



Figure 34.  Same as in Figure 33 for Middle Deck Cloud Amounts. 
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cloudiness in the north central section of the plot, extending southwestward, with 

smaller areas of >80 percent cloud amount in the SE and SW corners. The CCA 

forecast reproduced dense cloudiness in the north central sector and in the SE and 

SW corners. However, a west-east clear band interrupts the north central cloud mass, 

and the >80 percent mass incorrectly extends southward into the relatively clear area 

depicted in the RTNEPH. The pattern of the MLR(CCA-RTN) forecast is similar, but 

with reduced cloud amounts (80 percent > cloud amount >50 percent) in all but the 

SE sector. The MLR(RTN) also follows the CCA's pattern, but with even less 

cloudiness in the extreme northern portion and southwestern sector of the plot. On 

the other hand, MLR(RTN) correctly reintroduces a band of >80 percent cloudiness 

in the west central portion of the region, and the spurious southward intrusion of 

cloudiness west of Lake Baikal is reduced in magnitude. As before, the CCA creates 

the sharpest gradients and has the most area covered by <20 percent and >80 percent 

cloud cover. In their attempt to reduce the mean squared errors, the MLR techniques 

create greater areas of cloud amounts between 20 and 80 percent. 

These same characteristics are evident in the low cloud distribution shown in 

Figure 35. However, in this case the RTNEPH reference depicts a great deal more 

variability and lack of structure than in the middle cloud deck. Therefore, there is 

less chance that the forecast methods can faithfully reproduce the observed cloud 

scene. The CCA and MLR(CCA-RTN) are very similar in their forecasts in this case. 

They capture the major >80 percent cloud sectors present in the RTNEPH-northern, 

southeastern and west central sectors. They also represent the relatively clear slot 

over and NE of Lake Baikal. However, they forecast clear areas in a broad swath in 

the northern half and southwestern part of the plot where RTNEPH shows >50 

percent cloudiness, and also forecast 50-80 percent cloudiness in the south central 

region where the RTNEPH shows clear. MLR(RTN) reduces these deficiencies by 

producing less cloudiness where RTNEPH is clear and greater amounts of cloudiness 

where RTNEPH is cloudy. Thus, MLR(RTN) reduces the degree of error from that of 

the other two techniques at the expense of sharpness in cloud distribution. 
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Figure 35.   Same as in Figure 33 for Low Deck Cloud Amounts. 
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4.4.5  0000 UTC 23 JULY 1991 TROPICAL NORTH ATLANTIC OCEAN CASE 

We now consider the performance of the three forecast methods in 12-hour 

forecasts in the tropics. First we focus in on a region centered over the tropical north 

Atlantic Ocean in a summertime forecast. Climatologically, we expect that 

intertropical convergence zone (ICZ) cloudiness will dominate the southern portion 

of our 0-30N latitude extent. We have not included the figures for the high cloud in 

this case, because the transformed RTNEPH depicted very little high cloudiness for 

this case. Both CCA and MLR(CCA-RTN) produced significant amounts in the SE and 

SW corners of the region. 

Figure 36 depicts the RTNEPH and 12-hour forecasts of middle deck cloud. Here, 

for the first time, we see major differences between CCA and MLR(CCA-RTN). The 

CCA reproduces the basic position of the northern edge of the ICZ quite well in the 

southern sector of the region, both in location and gradient. MLR(CCA-RTN) tends 

to reduce the gradient and diffuse the cloud edge, greatly reducing the east-west 

extent of the >80 percent area. MLR(RTN) better preserves the ICZ shape, cloud 

edge, and >80 percent area seen in RTNEPH. All three forecasts produce cloudiness 

in the general locations of the three distinct RTNEPH cloud masses in the NW 

quadrant of the figures. CCA and MLR(RTN) more accurately simulated the cloud 

mass containing the >80 percent area closest to the U.S. mainland. MLR(RTN) is 

most accurate in the forecasts of the two cloud masses in the central Atlantic. 

In the RTNEPH rendition of low cloud distribution (Figure 37), a clear zone runs 

essentially SW to NE across the region, with cloud masses containing primarily 50 

to 80 percent cloudiness in the south and NW. None of the forecasts is able to create 

this pattern. In fact, the CCA produces 50 to 80 percent cloud amounts in the same 

sector where RTNEPH is clear. The two MLR forecasts lack the distinct cloudy areas 

in the RTNEPH, creating a rather bland and nondescript cloud field that bears little 

resemblance to the RTNEPH. We speculate that this may be due to the rather 

homogenous ocean surface, where spatial variations in predictor variables are 

reduced. 
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4.4.6 0000 UTC 23 JULY 1991 SOUTHEAST ASIA CASE 

As the previous case considered largely a tropical ocean region, we now look at 

the forecast performance of the methods over a tropical land region. In fact, we shall 

limit our discussion of the cloud distribution maps for southeast Asia shown in 

Figures 38-40 to just the land areas. 

The RTNEPH high cloud depiction shows areas of >20 percent cloudiness over 

the central SE Asian peninsula, directly to the north of this, and some along the SE 

China coastline. None of these areas of high cloudiness is produced by any of the 

forecasts. All three produce a small cloud mass over south central China, which may 

be a southwestern displacement of the most northerly RTNEPH cloudy region. 

In the middle cloud deck, all but the NE sector of the depicted land area is 

covered by more than 80 percent cloudiness in the RTNEPH. The CCA creates an 

erroneous gap in the clouds in the SE quadrant of the plot extending over Borneo. 

The CCA also reduces cloudiness in a band starting at the northern edge of the plot 

and stretching down over the central SE Asian peninsula, and in the central Malay 

peninsula. These same patterns of reductions occur in the MLR(CCA-RTN) and 

MLR(RTN), but to a lesser extent over the SE Asian and Malay peninsulas. Both 

MLR procedures fail to fully produce the <20 percent region in the NE. In general, 

the three schemes underforecast the cloud cover in the central SE Asian region in 

this case. 

In low cloud, RTNEPH cloud amounts vary greatly but 20-80 percent 

predominate. In contrast, CCA produces a large sector of more than 80 percent 

cloudiness oriented NW to SE. In MLR(CCA-RTN), the >80 percent region is limited 

to the northern edge, in agreement with RTNEPH.MLR(CCA-RTN) and MLR(RTN) 

produce a <20 percent area in the NE corner. As usual, MLR(RTN) produces a 

forecast with less spatial variation, but does cover the SE Asian peninsula with 50-80 

percent cloudiness except on the western edge, in agreement with RTNEPH. 

However, the 50-80 percent cloudiness over Borneo exceeds the amounts shown in the 

RTNEPH. 
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Figure 38. High Deck Cloud Amounts (%) in the Southeast Asia Region for 0000 UTC 23 July 1991 
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Figure 39.  Same as in Figure 38 for Middle Deck Cloud Amounts. 
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Figure 40.  Same as in Figure 38 for Low Deck Cloud Amounts. 
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4.5   Cloud Amount Predictors for 48-Hour Forecasts 

We developed separate predictor-predictand relationships by matching the seven 

10-day periods of 48-hour PL GSM forecasts with the transformed RTNEPH cloud 

amounts valid at forecast times. The resulting seven single-day predictand-predictor 

relationship sets were then applied to the corresponding verification period day's PL 

GSM forecast to diagnose the clouds. 

We first look at the leading 48-hour forecast predictors as identified by the MLR 

procedure. In Table 10 we list the strong and useful predictors following the 

convention of Section 4.2. As in the 12-hour forecasts (Table 7), RH is a strong 

predictor (except in the low deck in January, where it is only categorized as useful). 

A further comparison with the leading predictors of the 12-hour forecasts shows a 

definite reduction in the number of strong and useful dynamic predictors in the 48- 

hour forecasts. There is a corresponding increase in the number of strong turbulence 

predictors in January and strong geographic predictors in July. Humidity predictors 

appear to lose much of their importance in January, while retaining their 

contribution in July. Over all three decks, the five strongest predictors for the 48- 

hour forecasts are: January-dry static stability, maximum boundary layer wind speed 

in a 3X3 array, relative humidity, hours of darkness before valid forecast time t, and 

predictand deck wind speed; July-relative humidity, sine of latitude, latitude, 

precipitable water, dry static stability, and evaporation rate. 

As in the 12-hour predictors, we sought to determine the degree to which other 

variables may supplement a single humidity variable as predictors of cloud amount. 

When 48-hour forecasts are made, the most highly correlated humidity variable and 

its correlation for January are: low-RH2 (0.27), middle-RH (0.23), high-RH (0.19); 

for July: low-condensation pressure spread at t-6 hours (-0.28); middle-precipitable 

water (0.36), high-condensation pressure spread (0.14). Note that for low and middle 

decks in both months, the variable was the same as for 12-hour forecasts, but the 

correlations decreased. For the high deck, the variable changed and the correlation 

decreased in both months. These humidity variables were the most highly correlated 
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of any of the variables except for January low and middle clouds-maximum boundary 

layer wind in a 3X3 array (0.35 and 0.33 respectively), and July high cloud-sine of 

longitude (0.19). The leading humidity variables decreased in their correlation from 

12- to 48-hour forecasts while non-humidity variables essentially retained their 

correlation level. This suggests that the growth of the random error in humidity 

forecasts (error associated with locations and magnitudes of humidity minima and 

maxima) results in a decrease of correlation with observed cloudiness with forecast 

duration. This hypothesis is supported by the significant growth of error in the zonal 

cross sections of RMSE of relative humidity (Figure 15). 

4.6   48-Hour Cloud Forecast Verification Statistics 

We applied the 48-hour forecast predictor-predictand relationships for the seven 

10-day periods to the 48-hour PL GSM forecasts for the corresponding verification 

days. We then computed the objective verification statistics for the resulting 48-hour 

forecast cloud diagnoses. Tables 11 and 12 list the scores computed from the 48-hour 

forecast cloud diagnoses for the complete 7-day verification periods in January and 

July respectively. In this case, we limit the discussion of the results to the whole 

hemisphere scores only. We will emphasize the change in scores from the 12-hour 

forecast diagnoses (Tables 8 and 9) to the 48-hour forecast diagnoses (Tables 11 and 

12). 

In the January cloud amount forecast scores (compare Table 11 with Table 8), 

we see no appreciable changes in bias between 12- and 48-hour forecasts. All of the 

bias values are still small enough to be considered inconsequential. In MAE and 20/20 

scores, all procedures show a decrease in skill with forecast duration except 

MLR(RTN) in high cloud 20/20 score, which shows a slight improvement. Thus, the 

relative order of skill among the four procedures [CCA,MLR(RTN), MLR(CCA-RTN) 

persistence) remains about the same for 48 hours as it is for 12 hours. At 48 hours, 

MLR(RTN) has the lowest MAE for middle and low clouds, whereas persistence is 

slightly better in high clouds. A strike against CCA and MLR(CCA-RTN) methods is 
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Table 11. 48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UT 18 Jan 91- 

1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

Bias (% Cloud Amount) 

High     CCA -0.1 
MLR(RTN) 1.4 
MLR(CCA-RTN) 2.0 

Persistence -0.4 

Middle CCA -4.1 
MLR(RTN -9.5 
MLR(CCA-RTN) -3.7 
Persistence -0.9 

Low      CCA -8.2 
MLR(RTN) -10.4 
MLR(CCA-RTN) -3.1 
Persistence 0.2 

-0.1 -3.2 2.2 -0.3 

-0.2 2.1 2.9 1.5 

1.7 0.4 1.7 1.4 

-0.3 0.4 0.4 0.1 

15.7 32.9 -6.0 1.2 

2.7 -7.7 8.5 0.4 

1.6 8.0 -3.8 1.3 

-1.7 1.6 -1.1 -0.6 

-6.0 20.4 -0.6 2.4 

5.3 -6.6 9.3 1.7 

4.0 8.4 -1.9 2.8 

-1.2 1.2 -0.2 -0.1 

Mean Absolute Error (% Cloud Amount) 

High    CCA 5.9 
MLR(RTN) 6.6 
MLR(CCA-RTN) 7.6 
Persistence 4.2 

Middle CCA 22.4 

MLR(RTN 20.7 
MLR(CCA-RTN) 23.2 
Persistence 22.5 

Low     CCA 23.8 
MLR(RTN) 22.7 
MLR(CCA-RTN) 24.7 
Persistence 23.0 

4.0 13.3 13.4 9.4 

3.7 14.0 13.1 9.4 

5.6 14.4 13.1 10.3 

3.6 12.6 13.7 9.1 

30.2 45.1 40.5 36.3 

27.4 23.9 28.9 26.2 

29.3 30.5 33.7 30.3 

32.3 26.0 29.0 28.7 

32.8 39.6 35.1 34.4 

28.6 24.7 25.8 26.2 

31.5 32.0 30.1 30.6 

33.5 24.6 27.1 28.2 
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Table 11.  48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 

18 Jan 91-1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

RMSE (% Cloud Amount) 

High    CCA 16.4 

MLR(RTN) 13.0 

MLR(CCA-RTN) 15.2 

Persistence 12.6 

Middle CCA 34.6 

MLR(RTN 31.7 

MLR(CCA-RTN) 33.1 

Persistence 35.9 

Low      CCA 35.6 

MLR(RTN) 32.0 

MLR(CCA-RTN) 33.7 

Persistence 33.7 

14.8 26.1 28.2 22.6 
11.4 20.5 20.5 17.2 
13.7 21.4 24.9 20.6 
14.4 24.4 29.7 22.6 

41.5 55.7 51.2 47.9 
35.4 34.2 37.8 35.5 
36.7 39.1 42.5 38.7 
44.6 39.0 39.7 40.9 

40.9 52.1 46.1 45.2 
33.6 34.9 35.1 34.2 
37.8 42.4 39.4 39.2 
43.1 37.1 37.0 38.9 

Brier Score (perfect = 0) 

High     CCA 0.027 

MLR(RTN) 0.016 

MLR(CCA-RTN) 0.023 

Persistence 0.016 

Middle CCA 0.120 

MLR(RTN 0.101 

MLR(CCA-RTN) 0.110 

Persistence 0.129 

Low      CCA 0.127 

MLR(RTN) 0.103 

MLR(CCA-RTN) 0.113 

Persistence 0.114 

0.022 0.068 0.079 0.051 
0.013 0.042 0.042 0.029 
0.019 0.059 0.062 0.042 
0.021 0.059 0.088 0.051 

0.172 0.310 0.262 0.229 
0.126 0.117 0.143 0.126 
0.134 0.153 0.180 0.150 
0.199 0.152 0.158 0.168 

0.168 0.271 0.212 0.204 
0.113 0.122 0.123 0.117 
0.143 0.180 0.155 0.154 
0.185 0.137 0.137 0.151 
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Table 11.  48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 

18 Jan 91-1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

20/20 Score (perfect = 1) 

High    CCA 0.899 

MLR(RTN) 0.944 

MLR(CCA-RTN) 0.910 

Persistence 0.928 

Middle CCA 0.627 

MLR(RTN 0.640 

MLR(CCA-RTN) 0.612 

Persistence 0.641 

Low     CCA 0.592 

MLR(RTN) 0.605 

MLR(CCA-RTN) 0.572 

Persistence 0.597 

0.940 0.783 0.791 0.851 

0.967 0.819 0.839 0.889 

0.949 0.801 0.813 0.867 

0.948 0.789 0.799 0.859 

0.503 0.332 0.378 0.434 

0.492 0.590 0.483 0.530 

0.463 0.434 0.417 0.457 

0.494 0.591 0.519 0.541 

0.415 0.420 0.447 0.443 

0.397 0.565 0.543 0.504 

0.395 0.457 0.479 0.453 

0.432 0.602 0.532 0.523 

Normalized Sharpness(perfect = 1) 

High    CCA 1.007 

MLR(RTN) 1.043 

MLR(CCA-RTN) 1.011 

Persistence 1.008 

Middle CCA 0.957 

MLR(RTN 0.916 

MLR(CCA-RTN) 0.866 

Persistence 1.011 

Low     CCA 1.189 

MLR(RTN) 1.004 

MLR(CCA-RTN) 0.969 

Persistence 1.005 

0.995 1.061 0.971 1.006 

1.020 1.008 0.948 0.999 

0.999 1.056 0.966 1.005 

1.001 0.992 1.002 0.999 

0.958 0.895 1.068 0.969 

0.661 0.883 0.870 0.805 

0.582 0.561 0.754 0.651 

1.023 0.990 1.010 1.009 

0.734 1.053 1.131 0.987 

0.159 0.798 1.081 0.695 

0.394 0.728 0.914 0.698 

1.019 0.990 1.013 1.007 
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Table 12.  48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 

18 Jul 91-1200 UTC 24 Jul 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

Bias (% Cloud Amount) 

High     CCA 1.4 

MLR(RTN) 5.5 

MLR(CCA-RTN) 3.7 

Persistence 0.4 

Middle CCA 0.5 

MLR(RTN 1.7 

MLR(CCA-RTN) 0.9 

Persistence -1.7 

Low      CCA -1.2 

MLR(RTN) 3.5 

MLR(CCA-RTN) 1.2 

Persistence -0.9 

-0.5 -2.0 4.6 0.8 
1.5 3.3 -0.1 1.8 
1.2 0.6 3.6 2.3 
0.7 0.5 0.0 0.4 

-13.2 14.0 5.7 0.7 
7.1 -5.6 -0.9 1.0 
0.1 8.0 2.1 1.3 

-0.2 -1.8 -0.7 -0.9 

-1.3 -10.5 19.9 2.8 
7.2 -4.6 0.2 1.8 

-0.2 -2.7 4.2 0.6 
-0.3 -1.0 0.1 -0.4 

Mean Absolute Error (% Cloud Amount) 

High     CCA 12.0 

MLR(RTN) 12.1 

MLR(CCA-RTN) 12.5 

Persistence 8.7 

Middle CCA 28.6 

MLR(RTN 23.8 

MLR(CCA-RTN) 26.9 

Persistence 28.0 

Low      CCA 31.5 

MLR(RTN) 27.0 

MLR(CCA-RTN) 28.3 

Persistence 29.7 

6.9 12.8 8.5 9.3 
7.8 12.3 4.1 8.2 
9.1 12.9 7.5 9.9 
7.5 10.1 4.2 7.1 

33.0 36.5 37.4 34.9 
28.5 26.1 29.4 27.7 
30.6 30.8 33.9 31.4 
33.2 28.1 34.5 32.0 

35.9 31.1 39.1 35.3 
30.3 24.7 27.7 27.8 
32.1 28.4 32.5 31.0 
34.7 27.2 31.4 31.4 
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Table 12.  48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 
18 Jul 91-1200 UTC 24 Jul 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

RMSE (% Cloud Amount) 

High    CCA 24.9 
MLR(RTN) 18.1 
MLR(CCA-RTN) 21.0 
Persistence 20.3 

Middle CCA 40.8 
MLR(RTN 34.7 

MLR(CCA-RTN) 37.2 

Persistence 41.2 

Low     CCA 41.5 
MLR(RTN) 35.8 
MLR(CCA-RTN) 36.1 
Persistence 39.4 

19.6 24.7 20.7 21.8 

16.1 17.4 10.1 15.1 

18.1 22.0 16.6 19.0 

21.8 19.8 13.1 18.7 

44.5 48.5 49.2 46.7 

38.7 34.9 37.7 37.1 

39.6 40.4 43.4 40.8 

46.5 39.9 46.0 44.5 

43.9 42.3 48.9 44.9 

37.3 32.1 34.0 34.9 

38.2 36.9 39.8 38.2 

44.4 37.4 40.8 41.2 

Brier Score (perfect = 0) 

High    CCA 0.062 
MLR(RTN) 0.033 
MLR(CCA-RTN) 0.044 

Persistence 0.041 

Middle CCA 0.167 
MLR(RTN 0.120 
MLR(CCA-RTN) 0.138 
Persistence 0.170 

Low      CCA 0.172 
MLR(RTN) 0.128 
MLR(CCA-RTN) 0.130 
Persistence 0.155 

0.038 0.061 0.043 0.048 

0.026 0.030 0.010 0.023 

0.033 0.048 0.028 0.036 

0.048 0.039 0.017 0.035 

0.198 0.235 0.242 0.218 

0.150 0.122 0.142 0.138 

0.157 0.163 0.189 0.166 

0.217 0.159 0.211 0.198 

0.192 0.179 0.239 0.201 

0.139 0.103 0.115 0.122 

0.146 0.136 0.159 0.146 

0.198 0.140 0.166 0.170 
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Table 12.  48-Hour Cloud Amount Forecast Verification Scores for Initial Times of 0000 UTC 

18 Jan 91-1200 UTC 24 Jan 91 

Deck    Method 0-30N Land 0-30N Water       30-90N Land       30-90N Water 0-90N 

20/20 Score (perfect = 1) 

High     CCA 0.797 

MLR(RTN) 0.827 
MLR(CCA-RTN) 0.825 
Persistence 0.855 

Middle CCA 0.545 
MLR(RTN 0.585 

MLR(CCA-RTN) 0.550 
Persistence 0.554 

Low      CCA 0.460 

MLR(RTN) 0.499 
MLR(CCA-RTN) 0.480 
Persistence 0.477 

0.892 0.785 0.862 0.848 
0.915 0.846 0.965 0.905 
0.904 0.815 0.890 0.870 
0.893 0.827 0.936 0.889 

0.480 0.444 0.430 0.461 
0.503 0.590 0.461 0.501 
0.467 0.468 0.433 0.464 
0.500 0.548 0.454 0.500 

0.368 0.490 0.366 0.406 
0.424 0.531 0.455 0.467 
0.369 0.497 0.406 0.422 
0.416 0.533 0.455 0.462 

Normalized Sharpness(perfect = 1) 

High    CCA 0.987 
MLR(RTN) 0.912 

MLR(CCA-RTN) 0.978 
Persistence 0.999 

0 

Middle CCA 0.988 

MLR(RTN 0.860 
MLR(CCA-RTN) 0.862 
Persistence 1.009 

0.986 
0.989 
0.989 
0.994 

0.907 
0.748 
0.673 

1.005 

1.062 
0.984 
1.061 
0.989 

1.040 
0.721 
0.747 

1.006 

0.940 
1.038 
0.955 
1.000 

1.091 

0.631 
0.790 

0.998 

0.990 
0.997 

0.994 
0.995 

1.001 

0.717 
0.742 

1.003 

Low      CCA 1.091 
MLR(RTN) 0.751 

MLR(CCA-RTN) 0.640 
Persistence 1.002 

0.670 
0.497 

0.272 
0.999 

1.199 
0.676 
0.805 
0.988 

1.170 
0.385 

0.562 
1.007 

0.990 
0.533 
0.528 
0.999 
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that persistence still has lower MAE at 48 hours. This is true of CCA and both MLR 

methods in 20/20 score in middle and low cloud. 

In measures of mean-squared error (RMSE and Brier), the relative order of skill 

changes from 12 to 48 hours between MLR(CCA-RTN) and persistence. MLR(CCA- 

RTN) has the second best and persistence the third best scores at 12 hours, but these 

positions are reversed at 48 hours. MLR(RTN) holds the position of having the best 

RMSE and Brier scores in all decks for both forecast times. In fact, MLR(RTN) 

produces the smallest percentage increase of RMSE and Brier from 12 hours to 48 

hours of any of the four methods in all three decks except RMSE in high cloud, where 

the increase is about the same as for persistence. This fact suggests that MLR(RTN) 

maintains its skill with increasing forecast time better than the other methods. 

All four methods maintain sharpness of the cloud distribution in the high deck. 

However, in the middle deck, CCA and both MLR(RTN) yield a slightly degraded 

sharpness in the 48-hour forecasts. In the low deck, MLR(RTN) and MLR(CCA-RTN) 

produce less sharp cloud distributions than for 12-hour forecasts. In the middle and 

low decks, the MLR methods consistently produce cloud distributions with lower 

sharpness than do CCA and persistence. 

July cloud amount bias scores in Table 12 remain inconsequentially low as they 

did in the January 48-hour forecast diagnoses. MAE and 20/20 skill generally 

degrade with forecast time for the four procedures, with a few minor exceptions. 

Persistence remains most skillful in MAE in high cloud, while MLR(RTN) continues 

to have lowest MAE in middle and low decks. MLR(RTN) is as good as or better than 

persistence in 20/20 score in all decks in 48-hour forecast diagnoses. 

July 48-hour RMSE and Brier scores in the high cloud deck reflect no loss of 

skill for any of the methods from the 12-hour values. Similarly, persistence in the low 

deck is slightly more skillful at 48 hours than at 12 hours. Once again, MLR(RTN) 

produces the lowest mean-squared errors at both forecast times in all three decks. 

The increase in mean-squared error from the 12-hour to 48-hour diagnoses is largest 

in the middle deck. Yet even in this case, MLR(RTN) maintains its skill better than 

two of the three other procedures. 
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As in January, sharpness is essentially maintained in the high cloud deck for all 

four procedures in the July diagnoses. In the middle deck, MLR(CCA-RTN) diagnoses 

increase slightly in sharpness between 12 and 48 hours, but sharpness is lost in the 

middle deck by MLR(RTN) and by both MLR methods in the low deck. As in the 12- 

hour diagnoses, MLR methods lose normalized sharpness with decreasing deck 

altitude even though the reference (RTNEPH) sharpness is less in the lower decks. 

4.7   48-Hour Cloud Forecast Maps 

We also produced maps of cloud amounts diagnosed from 48-hour PL GSM 

forecasts. Our discussion of these maps is limited to two extratropical land cases 

(summer and winter) and a tropical land case (summer only). The focus of these 

discussions will be a comparison of the 48-hour forecast diagnoses with the 12-hour 

forecast diagnoses discussed earlier. 

4.7.1   1200 UTC 23 JANUARY 1991 NORTH CENTRAL ASIA CASE 

The cloud scenes discussed here were the product of 48-hour diagnoses conducted 

at the same time and region discussed in Section 4.4.3. Thus, the 48-hour forecast 

depictions (Figures 41-43) can be compared directly with the corresponding 12-hour 

forecast maps (Figures 30-32). 

In the high cloud deck (compare Figures 30 and 41), the CCA and MLR(CCA- 

RTN) cloud distributions are much more scattered at longer forecast times. In the 

MLR(RTN) depiction, the indicated 48-hour forecast cloudiness is spread eastward 

in the northern half of the region in comparison to the 12-hour forecasts. Clouds in 

the extreme southern part of the region are not singly oriented in the location of 

greatest RTNEPH cloudiness as they are at 12 hours. 

. CCA and MLR(CCA-RTN) middle cloud distributions (compare Figures 31 and 

42) produce their major areas of greatest and least amount of cloud in generally the 

same locations at both forecast times. Again, 48-hour forecasts depict a greater degree 
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of variance, especially in relatively clear area in the SW portions of the region. The 

CCA 48-hour forecast is especially prone to small "tongues" of >80 percent cloudiness 

in what is a <20 percent area at 12 hours. This no doubt contributes to the poorer 

RMSE scores of the 48-hour CCA forecasts. By contrast, the 48-hour MLR(RTN) 

forecast produces less variance by removing most of the >50 percent areas evident at 

12 hours. This also leads to an increase RMSE, but not as much as in CCA. 

CCA and MLR(CCA-RTN) low cloud depictions (compare Figures 32 and 43) 

show even more of the evidence short wavelength variance at 48 hours than was 

present at 12 hours. From the CCA figures, it appears that some phenomenon in the 

forecast excited a great deal of spatial irregularity in the RH field, leading to a very 

patchy cloud distribution. The intensity of the variance increases from 12 to 48 hours. 

By contrast, the MLR(RTN) cloud distribution maintains a low degree of cloud 

amount variance, but loses some of the > 50 percent cloudiness at 48 hours. 

4.7.2   0000 UTC 23 JULY 1991 NORTH CENTRAL ASIA CASE 

We diagnosed cloud distributions from 48-hour forecasts valid at the same time 

and over the same location as the 12-hour diagnoses discussed in Section 4.4.4. In the 

following discussion, we compare the 48-hour forecast cloud diagnoses (Figures 44-46) 

with corresponding depictions of the 12-hour forecast maps (Figures 33-35). 

In comparing high cloud deck cloud amount distributions in Figures 33 and 44, 

we find that the CCA and MLR(CCA-RTN) diagnoses resemble each other more at 

both forecast times than do the 12- and 48-hour diagnoses from a given scheme. This 

illustrates the great degree of influence that the CCA has on MLR(CCA-RTN) 

diagnoses. At 12 hours and especially at 48 hours, the MLR(CCA-RTN) diagnoses less 

cloud in most of cloud masses than does CCA. Unfortunately, the result is that none 

of the four figures resembles the transformed RTNEPH cloud distribution. Further, 

the MLR(RTN) agrees more with the transformed RTNEPH than do CCA and 

MLR(CCA-RTN) only because it produces very little cloud. As in the January case, 

the 48-hour amounts are less than the 12-hour amounts. 
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figure 41. High Deck Cloud Amounts (%) in the North Central Asia Region for 1200 UTC 23 January 
1991 from (a) Transformed RTNEPH, (b) 48-Hour CCA Forecast, (c) 48-Hour MLR(RTN) 
Forecast, (d) 48-Hour MLR(CCA-RTN) Forecast. 
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Figure 42.  Same as in Figure 41 for Middle Deck Cloud Amounts. 
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Figure 43.   Same as in Figure 41 for Low Deck Cloud Amounts. 
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Figure 44. High Deck Cloud Amounts (%) in the North Central Asia Region for 0000 UTC 23 July 
1991 from (a) Transformed RTNEPH, (b) 48-Hour CCA Forecast, (c) 48-Hour MLR(RTN) 
Forecast, (d) 48-Hour MLR(CCA-RTN) Forecast. 
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Figure 45.  Same as in Figure 44 for Middle Deck Cloud Amounts. 
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Figure 46.  Same as in Figure 44 for Low Deck Cloud Amounts. 
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The patterns of middle deck cloudiness in the 12-hour (Figure 34) and 48-hour 

(Figure 45) CCA and MLR(CCA-RTN) are again quite similar to each other at both 

forecast times. At both times, MLR(CCA-RTN) has less cloudiness by one contour 

interval (30 percent) than CCA in the CCA's northern and central regions of >80 

percent. This suggests an attempt in the MLR(CCA-RTN) to reduce the RMSE by 

reducing the extremes of cloud amount rather than by relocating them. It appears 

that the humidity distribution dictates the cloud locations in both schemes, and that 

the only significant effect that the MLR scheme can have is to change the amounts. 

Then, as the errors in humidity distribution increase with forecast time, the cloud 

amount RMSEs grow from the greater mislocation of cloudiness. MLR(RTN) mitigates 

this growth of RMSE by reducing the extremes of cloudiness to better conform to the 

predictand. However, MLR(RTN) also is strongly influenced by humidity distribution. 

This influence wanes in time as is evidenced by a comparison of Figures 34 and 45. 

The RTNEPH low cloud distribution in this case is much more irregular than the 

middle cloud. Yet this greater degree of irregularity is not represented well in any of 

the forecasts (Figures 35 and 46)-they are all much smoother. The 12-hour CCA and 

MLR(CCA-RTN) look very similar, but their 48-hour counterparts do not. The CCA 

depictions and the 12-hour MLR(CCA-RTN) make the areas of extremes of cloudiness 

(<20 percent and >80 percent) too large in the SW, SE, and northern sections of the 

region. They do not create a large enough clear area immediately to the south and 

NE of Lake Baikal. Probably because of the very irregular reference cloud scene and 

the irregular RH distribution associated with it, the 48-hour MLR(CCA-RTN) reduces 

most of the extremes of cloudiness to produce a much more bland cloud scene than 

CCA. MLR(RTN) contrasts with the other two schemes in this case by maintaining 

a 20-50 percent cloud amount band across the north central portion of the region, 

where the others have a large <20 percent swath. As in other cases, the extremes are 

somewhat reduced in the 48-hour MLR(RTN) compared to its 12-hour depiction. This 

may yield lower RMSEs than the other schemes at 48 hours, but also leads to a 

graphically less useful forecast. 
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4.7.3   0000 UTC 23 JULY 1991 SOUTHEAST ASIA CASE 

The final example depicts the 48-hour forecast cloud diagnoses for Southeast 

Asia over land, discussed in Section 4.4.6 for 12-hour forecasts. We discuss in the 

following paragraphs the comparison between the two forecast times as shown in 

Figures 38-40 and 47-49. As in Section 4.4.6, we limit our discussion to land areas. 

The CCA and MLR(CCA-RTN) high cloud figures (Figures 38 and 47) again show 

a closer resemblance to each other at both forecast times than they do for each 

scheme between forecast times. The 12-hour figures of all three schemes show a small 

patch of high cloud over northern SE Asia that lies between the two patches to the 

north and south in the RTNEPH. The 48-hour figures show cloudiness along the SE 

coastline of the SE Asia peninsula that lies between the two cloud masses in the 

RTNEPH (over central SE Asia and over the Malay Peninsula). Mislocation of high 

cloudiness occurred in both 12- and 48-hour forecast diagnoses. 

RTNEPH cloudiness is dense in the middle deck over all but the NE corner of 

the region. Interestingly, the 48-hour forecasts of all three schemes (Figure 48) leave 

more of SE Asia heavily clouded (and thus agree better with RTNEPH) than their 12- 

hour forecasts. The possibility that this is due to a growing moist bias with forecast 

time is unlikely (unless it is a very local effect) because of the tendency of the PL-92 

model to produce little systematic change in RH on the zonal mean in this latitude 

domain (see Figure 16). Because of the rather uniform distribution of dense cloud 

over most of SE Asia in the RTNEPH, the 48-hour MLR(RTN) (usually the most 

bland of the forecasts) is the most accurate forecast depiction in this case. 

As over north central Asia for this date and time, the observed low cloudiness 

(Figures 40 and 49) shows much greater spatial variance than does middle cloud. 

This makes it harder to visually judge overall accuracy of forecast depictions. We can 

say that, in this case, the MLR schemes do not noticeably reduce the cloudiness 

extremes from 12 hours to 48 hours. This is a departure from the trends we saw in 

the mid-latitude cases. We cannot conclude on the basis of a single case that tropical 

behavior of the MLR schemes is different from that in the extratropics. 
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Figure 47. High Deck Cloud Amounts (%) in the Southeast Asia Region for 0000 UTC 23 July 1991 
from (a) Transformed RTNEPH, (b) 48-Hour CCA Forecast, (c) 48-Hour MLR(RTN) 
Forecast, (d) 48-Hour MLR(CCA-RTN) Forecast. 
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Figure 48.  Same as in Figure 47 for Middle Deck Cloud Amounts. 
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Figure 49.  Same as in Figure 47 for Low Deck Cloud Amounts. 
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5.     SUMMARY AND CONCLUSIONS 

In this study, we have attempted to investigate the utility of any information 

derivable from noncloud NWP forecasts to infer layer cloud amount distributions. 

This effort involved identifying and preparing a suitable source of the predictand 

(cloud amount), generating and preparing a suitable source of the predictors (NWP 

variables and geographic information), and combining them to form diagnostic 

relationships in a statistical approach. The following paragraphs summarize the 

major findings of this study in each of these components of the problem. 

We selected the AFGWC RTNEPH cloud analyses as the source for our cloud 

amount information. In order to make it spatially compatible with the predictors, we 

rendered the analyses onto a "transform" grid, characterized by equal-spaced points 

in the horizontal and three cloud decks (NWP model sigma layer regimes in the 

vertical). We found a scarcity of independent data available to verify our transform 

grid cloud amounts objectively. As a result, we used only limited cases of satellite 

imagery to subjectively confirm the horizontal positioning of cloud features. By 

comparing global and zonal averages of the transformed RTNEPH with those of 

earlier investigations of 3DNEPH, we found that we were probably underrepresenting 

high cloud amounts and overrepresenting middle cloud amounts. We conclude from 

this that future efforts to use RTNEPH as layer cloud predictand will require an 

alternative method of assigning middle and high clouds to decks. Also, our choice to 

ignore high thin clouds in the RTNEPH should be revisited in any future RTNEPH 

use. Since total cloud amount is likely to be more accurately represented in the 

RTNEPH than is layer cloud amount, future attempts to diagnose clouds should 

include total cloud as a predictand. 

We found significant differences between transformed RTNEPH cloudiness 

amounts over land and water surfaces, especially in the winter hemisphere. This 

suggests that future efforts should determine the utility of regional development and 

application of cloud diagnosis techniques. The frequency distribution of transformed 

RTNEPH cloud amount by 5 percent cloud amount categories revealed strong peaks 
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at 0 percent and 100 percent cloud amount, with a fairly even distribution in 

between. We conclude that special predictor-predictand relationships must be derived 

to better fit this nearly bimodal predictand distribution. 

In addition to using RTNEPH (RTN) cloud amounts as a predictand, we also 

used the difference between cloud amounts inferred from the cloud curve algorithm17 

(CCA) method and RTNEPH cloud amounts (CCA-RTN). We derived the CCA RH-to- 

cloud relationships based on the deck-averaged RH at each transform gridpoint. We 

found that the use of the deck maximum RH in the CCA relationships produced 

poorer cloud amount diagnoses. 

Deck-average RH was just one of many variables derived from forecasts of the 

PL GSM NWP model used as potential predictors in our study. Including variable 

values at 6 hours prior to the valid forecast time, we considered some 99 predictors 

falling into the categories of dynamic, humidity, geographic, and turbulence. In 

diagnosing cloud amount from 12-hour forecast variables, we found that deck average 

RH was consistently the strongest predictor. However, we found that a number of 

turbulence (such as moist static stability, dry static stability, evaporation rate, 

boundary layer wind speed) and geographic (such as sine of latitude, hours of 

darkness before valid time, percent surface water) predictors boosted the total 

correlation of a linear combination of such predictors over a single most correlated 

humidity predictor. This suggests that auxiliary (nonhumidity) predictors can play 

a useful role in diagnosing cloud amount. Interestingly, dynamic variables such as 

vertical velocity, vorticity, and moisture advection played a rather insignificant role 

as predictors. Finally, we found that at 48 hours of forecast time, RH and other 

humidity variables were more poorly correlated with cloud amount. We attribute this 

lower correlation at longer forecast times to the growth of random (location and 

magnitude) errors in the PL GSM humidity forecasts. As a result, non-humidity 

predictors had to play a greater role in the process (many of them nearly maintained 

their correlation with cloud amount), leading to a total correlation that was only 

slightly lower at 48 hours than at 12 hours. 

We used multiple linear regression (MLR) as the statistical method to relate 

134 



linear combinations of the predictor (NWP forecast) variables to RTNEPH cloud 

amount. It became immediately clear that some modification of the MLR process was 

necessary to accommodate the nearly bimodal distribution of the predictand. We 

settled on an increase of the regression slope in the MLR(RTN) application and a 

withholding of humidity predictors in the MLR(CCA-RTN) as the best compromise 

between lowest RMSE and highest sharpness in the cloud diagnoses. 

We evaluated 12- and 48-hour cloud amount diagnoses from CCA, MLR(RTN), 

MLR(CCA-RTN) and persistence methods objectively against transformed RTNEPH 

over a January and July 7-day verification period. None of the diagnostic methods 

produced significant bias. MLR(RTN) consistently resulted in the lowest mean- 

squared and mean absolute errors. CCA generally produced the worst scores in both 

categories, with MLR(CCA-RTN) somewhere in between. Persistence was competitive 

in skill with MLR(RTN) at 12 hours but not at 48 hours. In 20/20 scores, persistence 

was competitive with MLR(RTN) at both forecast times. However, in sharpness 

MLR(RTN) and MLR(CCA-RTN) fell short the essentially perfectly sharp persistence 

and CCA in the high cloud deck. The MLR schemes produced cloud distributions that 

generally had only V2 to % the number of gridpoints with cloud amounts < 20 percent 

and > 80 percent than RTNEPH had. We concluded from this that the MLR method, 

even as modified to improve in capturing near-clear and near-overcast cases, 

sacrificed sharpness to optimize mean-squared error. We conclude that future efforts 

to statistically relate NWP variables to RTNEPH cloud amounts will require a more 

deliberate attempt to represent the bimodality of RTNEPH in order to improve 

sharpness. 

This conclusion was confirmed by a subjective evaluation of forecast cloud 

diagnosis maps in comparison with transform RTNEPH cloud amount maps. Overall, 

the MLR(RTN) cloud distributions lacked the clear distinctions between nearly clear 

and nearly overcast present in the RTNEPH. CCA cloud distributions did retain the 

clarity, but suffered from the mislocation of the cloud features due to humidity 

forecast errors. These humidity mislocations also negatively influenced the 

MLR(CCA-RTN) and MLR(RTN) diagnoses. In fact, most CCA and MLR(CCA-RTN) 
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depictions looked very similar. However, the MLR tended to reduce the extremes of 

cloudiness in the depictions in an attempt to reduce the RMSE caused by the 

humidity mislocation. The forecasted humidity distribution dictates the cloud 

locations in all three diagnostic methods. MLR(RTN) [and to a lesser degree, 

MLR(CCA-RTN)] tend to mitigate RMSE growth with forecast time (resulting from 

growth in humidity forecast error) by reducing the cloud amount extremes. This 

results in a flatter, less well-defined, less useful cloud amount depiction. From these 

findings, we conclude that, to improve the usefulness of diagnosed cloud distributions, 

(1) we must improve the NWP model's ability to forecast RH distribution, and (2) we 

must improve the sharpness of the cloud distribution diagnosed from RH and 

auxiliary variables. 

Future efforts at Phillips Laboratory will concentrate on improving PL GSM 

humidity forecasts, and improving RMSE and sharpness of cloud distributions 

diagnosed from them and auxiliary variables. Our ultimate goal in future research 

is to determine and demonstrate the greatest skill level possible in large-scale NWP 

model-based cloud diagnosis. 
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